
Java ExecutorService:

Key Methods

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Recognize the powerful features defined in the Java ExecutorService interface

• Understand other interfaces related
to ExecutorService

• Know the key methods provided by
ExecutorService

3

Learning Objectives in this Part of the Lesson
• Recognize the powerful features defined in the Java ExecutorService interface

• Understand other interfaces related
to ExecutorService

• Know the key methods provided by
ExecutorService

• These methods submit 1+ tasks for
asynchronous execution & manage
the lifecycle of tasks & the Executor
Service itself

4

Key Methods in the
ExecutorService Interface:

Task Execution

5

Key Methods in the ExecutorService Interface
• ExecutorService can execute

individual tasks
public interface ExecutorService

extends Executor {

// Inherited from Executor

void execute(Runnable command);

<T> Future<T> submit

(Callable<T> task);

...

6

• ExecutorService can execute
individual tasks

• execute() runs one-way
tasks that return void

public interface ExecutorService

extends Executor {

// Inherited from Executor

void execute(Runnable command);

<T> Future<T> submit

(Callable<T> task);

...

Key Methods in the ExecutorService Interface

However, this method isn’t very useful/common in practice

7

• ExecutorService can execute
individual tasks

• execute() runs one-way
tasks that return void

• submit() runs two-way async
tasks that return a value via
a future

public interface ExecutorService

extends Executor {

// Inherited from Executor

void execute(Runnable command);

<T> Future<T> submit

(Callable<T> task);

...

Key Methods in the ExecutorService Interface

This method is the most useful/common in practice

8

• ExecutorService can execute
individual tasks

• execute() runs one-way
tasks that return void

• submit() runs two-way async
tasks that return a value via
a future

• Supports the “synchronous
future” processing model

public interface ExecutorService

extends Executor {

// Inherited from Executor

void execute(Runnable command);

<T> Future<T> submit

(Callable<T> task);

...

Key Methods in the ExecutorService Interface

9

• ExecutorService can execute
individual tasks

• execute() runs one-way
tasks that return void

• submit() runs two-way async
tasks that return a value via
a future

• Supports the “synchronous
future” processing model

• Future.get() can block until
task completes successfully

public interface ExecutorService

extends Executor {

// Inherited from Executor

void execute(Runnable command);

<T> Future<T> submit

(Callable<T> task);

...

Key Methods in the ExecutorService Interface

10

• ExecutorService can execute
individual tasks

• execute() runs one-way
tasks that return void

• submit() runs two-way async
tasks that return a value via
a future

• Supports the “synchronous
future” processing model

• Future.get() can block until
task completes successfully

• After which point get() returns the task’s result

public interface ExecutorService

extends Executor {

// Inherited from Executor

void execute(Runnable command);

<T> Future<T> submit

(Callable<T> task);

...

Key Methods in the ExecutorService Interface

11

• ExecutorService can execute
individual tasks

• execute() runs one-way
tasks that return void

• submit() runs two-way async
tasks that return a value via
a future

• submit() can also run one-way
async tasks that return no value

public interface ExecutorService

extends Executor {

// Inherited from Executor

void execute(Runnable command);

<T> Future<T> submit

(Callable<T> task);

<T> Future<T> submit

(Runnable task);

...

Key Methods in the ExecutorService Interface

12

• ExecutorService can execute
individual tasks

• execute() runs one-way
tasks that return void

• submit() runs two-way async
tasks that return a value via
a future

• submit() can also run one-way
async tasks that return no value

• It is possible to cancel this
computation, however

public interface ExecutorService

extends Executor {

// Inherited from Executor

void execute(Runnable command);

<T> Future<T> submit

(Callable<T> task);

<T> Future<T> submit

(Runnable task);

...

Key Methods in the ExecutorService Interface

13

public interface ExecutorService

extends Executor {

...

<T> List<Future<T>> invokeAll

(Collection<? extends

Callable<T>> tasks) ...;

<T> T invokeAny

(Collection<? extends

Callable<T>> tasks) ...;

...

• ExecutorService can also execute
groups of tasks

Key Methods in the ExecutorService Interface

14

public interface ExecutorService

extends Executor {

...

<T> List<Future<T>> invokeAll

(Collection<? extends

Callable<T>> tasks) ...;

<T> T invokeAny

(Collection<? extends

Callable<T>> tasks) ...;

...

• ExecutorService can also execute
groups of tasks

Key Methods in the ExecutorService Interface

Groups of tasks can be
passed to these methods
as collection parameters

15

• ExecutorService can also execute
groups of tasks

Key Methods in the ExecutorService Interface

Don’t modify collection param while invokeAll() or invokeAny() are running!!!

public interface ExecutorService

extends Executor {

...

<T> List<Future<T>> invokeAll

(Collection<? extends

Callable<T>> tasks) ...;

<T> T invokeAny

(Collection<? extends

Callable<T>> tasks) ...;

...

16

• ExecutorService can also execute
groups of tasks

• Returns a list of futures
when all tasks complete

public interface ExecutorService

extends Executor {

...

<T> List<Future<T>> invokeAll

(Collection<? extends

Callable<T>> tasks) ...;

<T> T invokeAny

(Collection<? extends

Callable<T>> tasks) ...;

...

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html#invokeAll

Key Methods in the ExecutorService Interface

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html#invokeAll-java.util.Collection-

17

• ExecutorService can also execute
groups of tasks

• Returns a list of futures
when all tasks complete

public interface ExecutorService

extends Executor {

...

<T> List<Future<T>> invokeAll

(Collection<? extends

Callable<T>> tasks) ...;

<T> T invokeAny

(Collection<? extends

Callable<T>> tasks) ...;

...

Futures are used to indicate whether task terminate normally or exceptionally

All futures returned in
this list are “done”!

Key Methods in the ExecutorService Interface

18

• ExecutorService can also execute
groups of tasks

• Returns a list of futures
when all tasks complete

• Return the result of one
successful completion

public interface ExecutorService

extends Executor {

...

<T> List<Future<T>> invokeAll

(Collection<? extends

Callable<T>> tasks) ...;

<T> T invokeAny

(Collection<? extends

Callable<T>> tasks) ...;

...

Useful for concurrent algorithms that just want the result that completes first

Key Methods in the ExecutorService Interface

19

• ExecutorService can also execute
groups of tasks

• Returns a list of futures
when all tasks complete

• Return the result of one
successful completion

• Cancel uncompleted tasks

public interface ExecutorService

extends Executor {

...

<T> List<Future<T>> invokeAll

(Collection<? extends

Callable<T>> tasks) ...;

<T> T invokeAny

(Collection<? extends

Callable<T>> tasks) ...;

...

Key Methods in the ExecutorService Interface

20

• ExecutorService can also execute
groups of tasks

• Returns a list of futures
when all tasks complete

• Return the result of one
successful completion

• Cancel uncompleted tasks

• Ignore other
completed
task results

public interface ExecutorService

extends Executor {

...

<T> List<Future<T>> invokeAll

(Collection<? extends

Callable<T>> tasks) ...;

<T> T invokeAny

(Collection<? extends

Callable<T>> tasks) ...;

...

Key Methods in the ExecutorService Interface

21

public interface ExecutorService

extends Executor {

...

<T> List<Future<T>> invokeAll

(Collection<? extends

Callable<T>> tasks) ...;

<T> T invokeAny

(Collection<? extends

Callable<T>> tasks) ...;

...

• ExecutorService can also execute
groups of tasks

• Returns a list of futures
when all tasks complete

• Return the result of one
successful completion

These methods block the calling
thread until they are finished,
which may be non-intuitive..

Key Methods in the ExecutorService Interface

22

public interface ExecutorService

extends Executor {

...

<T> List<Future<T>> invokeAll

(Collection<? extends

Callable<T>> tasks,

long timeout, TimeUnit unit)

...;

<T> T invokeAny(Collection<?

extends Callable<T>> tasks,

long timeout, TimeUnit unit)

...;

...

• ExecutorService can also execute
groups of tasks

• Returns a list of futures
when all tasks complete

• Return the result of one
successful completion

These overloaded methods block
for up to a given amount of time

Key Methods in the ExecutorService Interface

23

public interface ExecutorService

extends Executor {

...

<T> List<Future<T>> invokeAll

(Collection<? extends

Callable<T>> tasks,

long timeout, TimeUnit unit)

...;

<T> T invokeAny(Collection<?

extends Callable<T>> tasks,

long timeout, TimeUnit unit)

...;

...

• ExecutorService can also execute
groups of tasks

• Returns a list of futures
when all tasks complete

• Return the result of one
successful completion

If method didn’t time out, each task
completed, whereas if it did time out,
some tasks will not have completed.

Key Methods in the ExecutorService Interface

Task that have not completed are cancelled if timeout occurs.

24

public interface ExecutorService

extends Executor {

...

<T> List<Future<T>> invokeAll

(Collection<? extends

Callable<T>> tasks,

long timeout, TimeUnit unit)

...;

<T> T invokeAny(Collection<?

extends Callable<T>> tasks,

long timeout, TimeUnit unit)

...;

...

• ExecutorService can also execute
groups of tasks

• Returns a list of futures
when all tasks complete

• Return the result of one
successful completion

TimeoutException is
thrown if timeout elapses

Key Methods in the ExecutorService Interface

25

Key Methods in the
ExecutorService Interface:

Lifecycle Management

26

• An ExecutorService instance
can be in one of three states

Key Methods in the ExecutorService Interface

new*ThreadPool()

Shutting

down

Running

Terminated

shutdown()/

shutdownNow()

27

• An ExecutorService instance
can be in one of three states

• Running

• After being created via
a factory method

Key Methods in the ExecutorService Interface

new*ThreadPool()

Shutting

down

Running

Terminated

shutdown()/

shutdownNow()

28

• An ExecutorService instance
can be in one of three states

• Running

• Shutting down

• After being shut down
gracefully or abruptly

Key Methods in the ExecutorService Interface

new*ThreadPool()

Shutting

down

Running

Terminated

shutdown()/

shutdownNow()

29

• An ExecutorService instance
can be in one of three states

• Running

• Shutting down

• Terminated

• After all tasks have
completed

Key Methods in the ExecutorService Interface

new*ThreadPool()

Shutting

down

Running

Terminated

shutdown()/

shutdownNow()

30

• An ExecutorService client can
initiate shutdown operations to
manage its lifecycle

public interface ExecutorService

extends Executor {

...

void shutdown();

List<Runnable> shutdownNow();

...

Key Methods in the ExecutorService Interface

31

• An ExecutorService client can
initiate shutdown operations to
manage its lifecycle

• Performs “graceful shutdown”
that completes active tasks

public interface ExecutorService

extends Executor {

...

void shutdown();

List<Runnable> shutdownNow();

...

Key Methods in the ExecutorService Interface

32

• An ExecutorService client can
initiate shutdown operations to
manage its lifecycle

• Performs “graceful shutdown”
that completes active tasks

• But ignores new tasks &
doesn’t process waiting
tasks

public interface ExecutorService

extends Executor {

...

void shutdown();

List<Runnable> shutdownNow();

...

Key Methods in the ExecutorService Interface

33

• An ExecutorService client can
initiate shutdown operations to
manage its lifecycle

• Performs “graceful shutdown”
that completes active tasks

• Performs “abrupt shutdown”
that cancels active tasks &
doesn’t process waiting tasks

public interface ExecutorService

extends Executor {

...

void shutdown();

List<Runnable> shutdownNow();

...

Key Methods in the ExecutorService Interface

34

• An ExecutorService client can
initiate shutdown operations to
manage its lifecycle

• Performs “graceful shutdown”
that completes active tasks

• Performs “abrupt shutdown”
that cancels active tasks &
doesn’t process waiting tasks

• Active tasks are cancelled by posting an
interrupt request to executor thread(s)

public interface ExecutorService

extends Executor {

...

void shutdown();

List<Runnable> shutdownNow();

...

Key Methods in the ExecutorService Interface

See docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.html

35

• An ExecutorService client can
initiate shutdown operations to
manage its lifecycle

• Performs “graceful shutdown”
that completes active tasks

• Performs “abrupt shutdown”
that cancels active tasks &
doesn’t process waiting tasks

• Active tasks are cancelled by posting an
interrupt request to executor thread(s)

public interface ExecutorService

extends Executor {

...

void shutdown();

List<Runnable> shutdownNow();

...

Key Methods in the ExecutorService Interface

Java interrupt requests are “voluntary”
& require cooperation between threads

See weblogs.java.net/blog/2009/03/02/cancelling-tasks-threadinterrupt-fragility

https://weblogs.java.net/blog/2009/03/02/cancelling-tasks-threadinterrupt-fragility

36

• An ExecutorService client can
initiate shutdown operations to
manage its lifecycle

• Performs “graceful shutdown”
that completes active tasks

• Performs “abrupt shutdown”
that cancels active tasks &
doesn’t process waiting tasks

• Active tasks are cancelled by posting an
interrupt request to executor thread(s)

• Returns waiting tasks

public interface ExecutorService

extends Executor {

...

void shutdown();

List<Runnable> shutdownNow();

...

Key Methods in the ExecutorService Interface

37

• An ExecutorService client can
initiate shutdown operations to
manage its lifecycle

• Performs “graceful shutdown”
that completes active tasks

• Performs “abrupt shutdown”
that cancels active tasks &
doesn’t process waiting tasks

• Tasks submitted after an Executor
Service is shut down are dealt
with by RejectedExceptionHandler

Key Methods in the ExecutorService Interface

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/RejectedExecutionHandler.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/RejectedExecutionHandler.html

38

• An ExecutorService client can
initiate shutdown operations to
manage its lifecycle

• Performs “graceful shutdown”
that completes active tasks

• Performs “abrupt shutdown”
that cancels active tasks &
doesn’t process waiting tasks

• Tasks submitted after an Executor
Service is shut down are dealt
with by RejectedExceptionHandler

• Can silently discard task or throw RejectedExecutionException

Key Methods in the ExecutorService Interface

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/RejectedExecutionException.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/RejectedExecutionException.html

39

• Clients of ExecutorService can
query the status of a shutdown
& wait for termination to finish

public interface ExecutorService

extends Executor {

...

boolean isShutdown();

boolean isTerminated();

boolean awaitTermination

(long timeout,

TimeUnit unit) ...;

Key Methods in the ExecutorService Interface

40

• Clients of ExecutorService can
query the status of a shutdown
& wait for termination to finish

• True if executor shut down

• i.e., in “shutting down” state

public interface ExecutorService

extends Executor {

...

boolean isShutdown();

boolean isTerminated();

boolean awaitTermination

(long timeout,

TimeUnit unit) ...;

Key Methods in the ExecutorService Interface

41

• Clients of ExecutorService can
query the status of a shutdown
& wait for termination to finish

• True if executor shut down

• True if all tasks have completed
after executor was shut down

• i.e., in “terminated” state

public interface ExecutorService

extends Executor {

...

boolean isShutdown();

boolean isTerminated();

boolean awaitTermination

(long timeout,

TimeUnit unit) ...;

Key Methods in the ExecutorService Interface

42

• Clients of ExecutorService can
query the status of a shutdown
& wait for termination to finish

• True if executor shut down

• True if all tasks have completed
after executor was shut down

• Blocks until all tasks complete

public interface ExecutorService

extends Executor {

...

boolean isShutdown();

boolean isTerminated();

boolean awaitTermination

(long timeout,

TimeUnit unit) ...;

Key Methods in the ExecutorService Interface

43

• Clients of ExecutorService can
query the status of a shutdown
& wait for termination to finish

• True if executor shut down

• True if all tasks have completed
after executor was shut down

• Blocks until all tasks complete

public interface ExecutorService

extends Executor {

...

boolean isShutdown();

boolean isTerminated();

boolean awaitTermination

(long timeout,

TimeUnit unit) ...;

Key Methods in the ExecutorService Interface

shutdownNow() might reduce the
blocking time for awaitTermination()

See www.baeldung.com/java-executor-service-tutorial

http://www.baeldung.com/java-executor-service-tutorial

44

• Clients of ExecutorService can
query the status of a shutdown
& wait for termination to finish

• True if executor shut down

• True if all tasks have completed
after executor was shut down

• Blocks until all tasks complete

public interface ExecutorService

extends Executor {

...

boolean isShutdown();

boolean isTerminated();

boolean awaitTermination

(long timeout,

TimeUnit unit) ...;

See en.wikipedia.org/wiki/Barrier_(computer_science)

Key Methods in the ExecutorService Interface

shutdown*() & awaitTermination()
provide barrier synchronization

https://en.wikipedia.org/wiki/Barrier_(computer_science)

45

End of Java Executor
Service: Key Methods

