Douglas C. Schmidt
i.schmidt@vanderbiit.edu
www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software
Q 7 Integrated Systems
Vanderhilt University

Nashuille, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Know the key methods provided by
ExecutorService

<<Java Interface==
&9 ExecutorService

@ shutdown():void

@ shutdownNow():List<Runnable>

@ isShutdown():boolean

@ isTerminated():boolean

@ awaitTermination(long, TimeUnit):boolean

@ submit(Callable<T=):Future<T=>

@ submit(Runnable, T):Future<T>

@ submit(Runnable):Future<?>

@ invokeAll(Collection<? extends Callable<T==):List<Future<T=>>
@ invokeAny(Collection<? extends Callable<T>>)

@ invokeAny(Collection<? extends Callable<T>> long, TimeUnit)

Learning Objectives in this Part of the Lesson

<<Java Interface==
&9 ExecutorService

@ shutdown():void

* KnOW the key methOdS prOVided by @ shutdownNow():List<Runnable>
ExecutorService @ isShutdown():boolean

@ isTerminated():boolean

« These methods submit 1+ tasks for | ¢ awaitTermination(long, TimeUnit):boolean
@ submit(Callable<T>):Future<T>

asyn.ChronOUS execution & Manage @ submit(Runnable, T):Future<T>
the lifecycle of tasks & the Executor | ¢ submit(Runnable):Future<?>

. . @ invokeAll(Collection<? extends Callable<T==):List<Future<T=>>
SerVICe Itself @ invokeAny(Collection<? extends Callable<T>>)

@ invokeAny(Collection<? extends Callable<T=> long

Key Methods in the
ExecutorService Interface:
Task Execution

4

Key Methods in the ExecutorService Interface

« ExecutorService can execute public interface ExecutorService

individual tasks extends Executor {
// Inherited from Executor
void execute (Runnable command) ;

<T> Future<T> submit
(Callable<T> task);

Key Methods in the ExecutorService Interface

« ExecutorService can execute public interface ExecutorService
individual tasks extends Executor {

. execute() runs one-way //_Inher:l.ted from Executor
. void execute (Runnable command) ;
tasks that return void

<T> Future<T> submit
(Callable<T> task);

However, this method isn't very useful/common in practice

Key Methods in the ExecutorService Interface

« ExecutorService can execute public interface ExecutorService

individual tasks extends Executor {
// Inherited from Executor
void execute (Runnable command) ;

« submit() runs two-way async <T> Future<T> submit
tasks that return a value via (Callable<T> task) ;
a future

This method is the most useful/common in practice

Key Methods in the ExecutorService Interface

« ExecutorService can execute public interface ExecutorService

individual tasks extends Executor {
// Inherited from Executor
void execute (Runnable command) ;

« submit() runs two-way async <T> Future<T> submit
tasks that return a value via (Callable<T> task) ;
a future

« Supports the “synchronous
future” processing model

Key Methods in the ExecutorService Interface

« ExecutorService can execute public interface ExecutorService

individual tasks extends Executor {
// Inherited from Executor

void execute (Runnable command) ;

« submit() runs two-way async <T> Future<T> submit
tasks that return a value via (Callable<T> task) ;
a future

 Future.get() can block until
task completes successfully

Key Methods in the ExecutorService Interface

« ExecutorService can execute public interface ExecutorService

individual tasks extends Executor {
// Inherited from Executor

void execute (Runnable command) ;

« submit() runs two-way async <T> Future<T> submit
tasks that return a value via (Callable<T> task) ;
a future

 Future.get() can block until
task completes successfully

 After which point get() returns the task’s result

10

Key Methods in the ExecutorService Interface

« ExecutorService can execute public interface ExecutorService
individual tasks extends Executor {
// Inherited from Executor
void execute (Runnable command) ;

<T> Future<T> submit
(Callable<T> task);

. <T> Future<T> submit
« submit() can also run one-way (Runnable task);

async tasks that return no value

11

Key Methods in the ExecutorService Interface

« ExecutorService can execute public interface ExecutorService
individual tasks extends Executor {
// Inherited from Executor
void execute (Runnable command) ;

<T> Future<T> submit
(Callable<T> task);

i <T> Future<T> submit
« submit() can also run one-way (Runnable task);

async tasks that return no value

« It is possible to cancel this
computation, however

12

Key Methods in the ExecutorService Interface

- ExecutorService can also execute public interface ExecutorService
groups of tasks extends Executor {

<T> List<Future<T>> invokelAll
(Collection<? extends
Callable<T>> tasks) ...;

<T> T invokeAny
(Collection<? extends
Callable<T>> tasks) ...;

13

Key Methods in the ExecutorService Interface

- ExecutorService can also execute public interface ExecutorService
groups of tasks extends Executor {

<T> List<Future<T>> invokelAll
(Collection<? extends
Callable<T>> tasks) ...;

<T> T invokeAny
(Collection<? extends

Groups of tasks can be / Callable<T>> tasks) ...;
passed to these methods R

as collection parameters

14

Key Methods in the ExecutorService Interface

- ExecutorService can also execute public interface ExecutorService
groups of tasks extends Executor {

<T> List<Future<T>> invokeAll
(Collection<? extends
Callable<T>> tasks) ...;

<T> T invokeAny
(Collection<? extends
Callable<T>> tasks) ...;

Don’t modify collection param while invokeAll() or invokeAny() are running!!!

Key Methods in the ExecutorService Interface

- ExecutorService can also execute public interface ExecutorService
groups of tasks extends Executor {

» Returns a list of futures
when all tasks complete

<T> List<Future<T>> invokelAll
(Collection<? extends
Callable<T>> tasks) ...;

<T> T invokeAny
(Collection<? extends
Callable<T>> tasks) ...;

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService. html#invokeAll

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html#invokeAll-java.util.Collection-

Key Methods in the ExecutorService Interface

- ExecutorService can also execute public interface ExecutorService
groups of tasks extends Executor {

» Returns a list of futures
when all tasks complete

<T> List<Future<T>> invokelAll
(Collection<? extends

Callable<T>> tasks) ...;
///////:;; T invokeAny

All futures returned in (Collection<? extends
this list are "done”! Callable<T>> tasks) ...;

Futures are used to indicate whether task terminate normally or exceptionally

Key Methods in the ExecutorService Interface

- ExecutorService can also execute public interface ExecutorService
groups of tasks extends Executor {

<T> List<Future<T>> invokelAll
(Collection<? extends
« Return the result of one Callable<T>> tasks) ...;
successful completion
<T> T invokeAny
(Collection<? extends
Callable<T>> tasks) ...;

‘ Useful for concurrent algorithms that just want the result that completes first |

Key Methods in the ExecutorService Interface

- ExecutorService can also execute public interface ExecutorService
groups of tasks extends Executor {

<T> List<Future<T>> invokeAll
(Collection<? extends
« Return the result of one Callable<T>> tasks) ...;

successful completion

» Cancel uncompleted tasks <T> T invokeAny

(Collection<? extends
Callable<T>> tasks) ...;

19

Key Methods in the ExecutorService Interface

- ExecutorService can also execute public interface ExecutorService
groups of tasks extends Executor {

<T> List<Future<T>> invokelAll
(Collection<? extends
« Return the result of one Callable<T>> tasks) ...;
successful completion
<T> T invokeAny
(Collection<? extends
- Ignore other Callable<T>> tasks) ...;
completed

task results

lgnore

20

Key Methods in the ExecutorService Interface

- ExecutorService can also execute public interface ExecutorService
groups of tasks extends Executor {

<T> List<Future<T>> invokelAll
(Collection<? extends
Callable<T>> tasks) ...;

<T> T invokeAny
(Collection<? extends
Callable<T>> tasks) ...;

These methods block the calling
thread until they are finished,
which may be non-intuitive..

21

Key Methods in the ExecutorService Interface

- ExecutorService can also execute public interface ExecutorService
groups of tasks extends Executor {

<T> List<Future<T>> invokelAll
(Collection<? extends
Callable<T>> tasks,

////////’1Ong timeout, TimeUnit unit)
These overloaded methods block

for up to a given amount of time <T> T invokeAny (Collection<?
\\\\\\\\ extends Callable<T>> tasks,
long timeout, TimeUnit unit)

.
LI 4

22

Key Methods in the ExecutorService Interface

- ExecutorService can also execute public interface ExecutorService
groups of tasks extends Executor {

<T> List<Future<T>> invokelAll
(Collection<? extends
Callable<T>> tasks,
long timeout, TimeUnit unit)

.
LI 4

If method aidn’t time out, each task | <ps T invokeAny (Collection<?
completed, whereas if it did time out, extends Callable<T>> tasks,
some tasks will not have completed.

long timeout, TimeUnit unit)

.
LI 4

Task that have not completed are cancelled if timeout occurs. |

Key Methods in the ExecutorService Interface

- ExecutorService can also execute public interface ExecutorService
groups of tasks extends Executor {

<T> List<Future<T>> invokelAll
(Collection<? extends
Callable<T>> tasks,
long timeout, TimeUnit unit)

.
LI 4

<T> T invokeAny (Collection<?
extends Callable<T>> tasks,
TimeoutException is long timeout, TimeUnit unit)
thrown If timeout elapses e

24

Key Methods in the
ExecutorService Interface:
Lifecycle Management

25

Key Methods in the ExecutorService Interface

 An ExecutorService instance
can be in one of three states

[Running }<

newx Threadm

shutdown () /
shutdownNow ()

Shutting
down

Terminated]

26

Key Methods in the ExecutorService Interface

 An ExecutorService instance
can be in one of three states

« Running

« After being created via
a factory method

Running

newx Threadm

shutdown () /
shutdownNow ()

Shutting
down

Terminated]

@/

27

Key Methods in the ExecutorService Interface

 An ExecutorService instance
can be in one of three states

[Running }<

newx Threadm

shutdown () /
shutdownNow ()

« Shutting down
 After being shut down
gracefully or abruptly

Shutting
down

Terminated]

@/

28

Key Methods in the ExecutorService Interface

 An ExecutorService instance
can be in one of three states

[Running }<

newx Threadm

shutdown () /
shutdownNow ()

 Terminated

« After all tasks have
completed Shutting

down

Terminated

@/

29

Key Methods in the ExecutorService Interface

« An ExecutorService client can public interface ExecutorService
initiate shutdown operations to extends Executor {
manage its lifecycle

void shutdown|() ;

List<Runnable> shutdownNow () ;

30

Key Methods in the ExecutorService Interface

An ExecutorService client can
initiate shutdown operations to
manage its lifecycle

» Performs “graceful shutdown” void shutdown () ;
that completes active tasks

O

public interface ExecutorService
extends Executor {

List<Runnable> shutdownNow () ;

Shut Down

31

Key Methods in the ExecutorService Interface

* An ExecutorService client can
initiate shutdown operations to
manage its lifecycle

W p void shutdown () ;
 Performs “graceful shutdown QO
that completes active tasks List<Runnable> shutdownNow () ;

« But ignores new tasks & ﬁ ..
doesn't process waltlng V=a
tasks A\

public interface ExecutorService
extends Executor {

Key Methods in the ExecutorService Interface

An ExecutorService client can
initiate shutdown operations to
manage its lifecycle

public interface ExecutorService
extends Executor {

void shutdown () ;

List<Runnable> shutdownNow () ;
* Performs “abrupt shutdown”

that cancels active tasks &
doesn’t process waiting tasks

33

Key Methods in the ExecutorService Interface

« An ExecutorService client can public interface ExecutorService

initiate shutdown operations to extends Executor {

manage its lifecycle .
void shutdown() ;

List<Runnable> shutdownNow () ;

» Performs “abrupt shutdown”
that cancels active tasks &
doesn’t process waiting tasks

« Active tasks are cancelled by posting an
interrupt request to executor thread(s)

See docs.oracle.com/javase/tutorial/essential/concurrency/interru

t.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.html

Key Methods in the ExecutorService Interface

« An ExecutorService client can public interface ExecutorService
initiate shutdown operations to extends Executor {
manage its lifecycle

void shutdown () ;

List<Runnable> shutdownNow () ;

» Performs “abrupt shutdown”
that cancels active tasks &

doesn’t process waiting tasks

« Active tasks are cancelled by posting an
interrupt request to executor thread(s)

Java interrupt requests are "“voluntary”
& require cooperation between threads

See weblogs.java.net/blog/2009/03/02/cancelling-tasks-threadinterrupt-fragility

https://weblogs.java.net/blog/2009/03/02/cancelling-tasks-threadinterrupt-fragility

Key Methods in the ExecutorService Interface

« An ExecutorService client can public interface ExecutorService
initiate shutdown operations to extends Executor {

manage its lifecycle

void shutdown () ;

List<Runnable> shutdownNow () ;
» Performs “abrupt shutdown”

that cancels active tasks &
doesn’t process waiting tasks

« Returns waiting tasks

36

Key Methods in the ExecutorService Interface

« An ExecutorService client can
initiate shutdown operations to
manage its lifecycle

« Tasks submitted after an Executor
Service is shut down are dealt
with by RejectedExceptionHandler

Interface RejectedExecutionHandler

All Known Implementing Classes:
ThreadPoolExecutor.AbortPolicy,
ThreadPoolExecutor.CallerRunsPolicy,
ThreadPoolExecutor.DiscardOldestPolicy,
ThreadPoolExecutor.DiscardPolicy

public interface RejectedExecutionHandler

A handler for tasks that cannot be executed by a
ThreadPoolExecutor.

See docs.orade.com/javase/8/docs/api/java/util/concurrent/RejectedExecutionHandlerhtml

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/RejectedExecutionHandler.html

Key Methods in the ExecutorService Interface

« An ExecutorService client can
initiate shutdown operations to
manage its lifecycle

« Tasks submitted after an Executor
Service is shut down are dealt
with by RejectedExceptionHandler

Class RejectedExecutionException

java.lang.Object
java.lang.Throwable
java.lang.Exception
java.lang.RuntimeException
java.util.concurrent.RejectedExecutionException

All Implemented Interfaces:

Serializable

public class RejectedExecutionException
extends RuntimeException

Exception thrown by an Executor when a task cannot be
accepted for execution.

 Can silently discard task or throw RejectedExecutionException

See docs.orade.com/javase/8/docs/api/java/util/concurrent/RejectedExecutionException.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/RejectedExecutionException.html

Key Methods in the ExecutorService Interface

« Clients of ExecutorService can public interface ExecutorService
query the status of a shutdown extends Executor {
& wait for termination to finish

boolean isShutdown () ;
boolean isTerminated() ;
boolean awaitTermination

(long timeout,
TimeUnit unit) ...;

39

Key Methods in the ExecutorService Interface

« Clients of ExecutorService can public interface ExecutorService
query the status of a shutdown extends Executor {
& wait for termination to finish

* True if executor shut down
* i.e., in “shutting down” state boolean isTerminated();

boolean isShutdown () ;

boolean awaitTermination
(long timeout,
TimeUnit unit) ...;

40

Key Methods in the ExecutorService Interface

« Clients of ExecutorService can public interface ExecutorService
query the status of a shutdown extends Executor {
& wait for termination to finish

boolean isShutdown () ;

» True if all tasks have completed boolean isTerminated() ;
after executor was shut down

. i.e., in “terminated” state boolean awaitTermination

(long timeout,
TimeUnit unit) ...;

41

Key Methods in the ExecutorService Interface

« Clients of ExecutorService can public interface ExecutorService
query the status of a shutdown extends Executor {
& wait for termination to finish

boolean isShutdown () ;
boolean isTerminated() ;
boolean awaitTermination

(long timeout,
TimeUnit unit) ...;

 Blocks until all tasks complete

42

Key Methods in the ExecutorService Interface

« Clients of ExecutorService can public interface ExecutorService
query the status of a shutdown extends Executor {
& wait for termination to finish

boolean isShutdown () ;
boolean isTerminated() ;
boolean awaitTermination

(long timeout,
TimeUnit unit) ...;

shutdownNow() might reduce the
blocking time for awaitTermination()

 Blocks until all tasks complete

See www.baeldung.com/java-executor-service-tutorial

http://www.baeldung.com/java-executor-service-tutorial

Key Methods in the ExecutorService Interface

« Clients of ExecutorService can public interface ExecutorService
query the status of a shutdown extends Executor {
& wait for termination to finish

boolean isShutdown () ;
boolean isTerminated() ;

* Blocks until all tasks complete boolean awaitTermination
(long timeout,

7\ \ﬂ? E *"4 ﬂ"' 2% “ M-- TimeUnit unit)

shutdown*() & awaitTermination()
provide barrier synchronization

See en.wikipedia.org/wiki/Barrier (computer science)

https://en.wikipedia.org/wiki/Barrier_(computer_science)

End of Java Executor
Service: Key Methods

45

