
Java ExecutorService: Related Interfaces

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Recognize the powerful features defined in

the Java ExecutorService interface

• Understand other interfaces related
to ExecutorService

3

Overview of Interfaces
Related To ExecutorService

4

• ExecutorService uses several other interfaces to
manage task lifecycles

Overview of Interfaces Related to ExecutorService

5

• ExecutorService uses two interfaces to define tasks

Overview of Interfaces Related to ExecutorService

6See docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html

• ExecutorService uses two interfaces to define tasks, e.g.

• Runnable

• A “one-way” task that does not return a result

Overview of Interfaces Related to ExecutorService

Runnable is a functional interface

https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html

7

• ExecutorService uses two interfaces to define tasks, e.g.

• Runnable

• Callable

• A “two-way” task that returns a result

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Callable.html

Overview of Interfaces Related to ExecutorService

Callable is also a functional interface

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Callable.html

8

• ExecutorService uses two interfaces to define tasks, e.g.

• Runnable

• Callable

• A “two-way” task that returns a result

• Typically used to run two-way async tasks◘

Overview of Interfaces Related to ExecutorService

9

• ExecutorService uses two interfaces to define tasks, e.g.

• Runnable

• Callable

• A “two-way” task that returns a result

• Typically used to run two-way async tasks

• Implements the Active Object pattern

See en.wikipedia.org/wiki/Active_object

Overview of Interfaces Related to ExecutorService

Decouples the thread that invokes a method
from the thread that executes the method

http://en.wikipedia.org/wiki/Active_object

10See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html

• ExecutorService uses the Future interface to represent

& control a task’s lifecycle

Overview of Interfaces Related to ExecutorService

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html

11

• ExecutorService uses the Future interface to represent

& control a task’s lifecycle, e.g.,

• Can be used to retrieve a two-way task’s result

Overview of Interfaces Related to ExecutorService

callable

callable

callable

WorkQueue

Fixed

WorkerThreads

run()

4.take()

5.run()
Thread
(main thread)

BigFraction

Future

6.get()

2.Return future

1.submit(task) Callable

ThreadPoolExecutor

3.offer() submit()

ResultType result

= future.get();

12

• ExecutorService uses the Future interface to represent

& control a task’s lifecycle, e.g.,

• Can be used to retrieve a two-way task’s result

• Can be tested for completion

Overview of Interfaces Related to ExecutorService

callable

callable

callable

WorkQueue

Fixed

WorkerThreads

run()

4.take()

5.run()
Thread
(main thread)

BigFraction

Future

6.isDone()

2.Return future

1.submit(task) Callable

3.offer() submit()

if (future.isDone())

...

ThreadPoolExecutor

13

• ExecutorService uses the Future interface to represent

& control a task’s lifecycle, e.g.,

• Can be used to retrieve a two-way task’s result

• Can be tested for completion

• Can be tested for cancellation & cancelled

Overview of Interfaces Related to ExecutorService

callable

callable

callable

WorkQueue

Fixed

WorkerThreads

run()

4.take()

5.run()
Thread
(main thread)

BigFraction

Future

6.cancel()

if (!future.isCancelled())

future.cancel();

2.Return future

1.submit(task) Callable

3.offer() submit()

ThreadPoolExecutor

14

Overview of Interfaces Related to ExecutorService

1. Asynchronous
computation

2. Result obtained only after
the computation completes

See en.wikipedia.org/wiki/Futures_and_promises

• A Java future defines a proxy to represent & control the result of an async
computation.

https://en.wikipedia.org/wiki/Futures_and_promises

15

Overview of Interfaces Related to ExecutorService

See www.citygrafx.com/table-numbers-table-markers

Table tent #’s are
a human-known-
use of futures!

• A Java future defines a proxy to represent & control the result of an async
computation.

http://www.citygrafx.com/table-numbers-table-markers

16

Overview of Interfaces Related to ExecutorService

Table tent #’s are
a human-known-
use of futures!

e.g., McDonald’s vs Wendy’s model of preparing fast food

• A Java future defines a proxy to represent & control the result of an async
computation.

17

Overview of Interfaces Related to ExecutorService
• ExecutorService.submit() can initiate an async computation in Java.

See next part of this lesson on “Java ExecutorService: Key Methods”

ExecutorService executorService =

Executors.newFixedThreadPool(sMAX_THREADS);

ThreadPoolExecutor

callable

callable

callable

callable

WorkQueue

Fixed

WorkerThreads

submit() run()

4.take()

5.run()

3.offer()

ExecutorService

Thread
(main thread)

18

1.submit

(task)

Callable

Overview of Interfaces Related to ExecutorService
• ExecutorService.submit() can initiate an async computation in Java.

Callable<BigFraction> task = () -> {

BigFraction bf1 = new BigFraction(f1);

BigFraction bf2 = new BigFraction(f2);

return bf1.multiply(bf2);

};

Future<BigFraction> future = mExecutorService.submit(task);

ThreadPoolExecutor

callable

callable

callable

callable

WorkQueue

Fixed

WorkerThreads

submit() run()

4.take()

5.run()

3.offer()

ExecutorService

Thread
(main thread)

BigFraction

Future

2.Return future

6.get()

19

Overview of Interfaces Related to ExecutorService
• ExecutorService.submit() can initiate an async computation in Java.

• It returns a Future implemented
as a FutureTask

See upcoming lesson on “Java FutureTask”

1.submit

(task)

Thread
(main thread)

Callable

BigFraction

Future

2.Return future

6.get()

Callable<BigFraction> task = () -> {

BigFraction bf1 = new BigFraction(f1);

BigFraction bf2 = new BigFraction(f2);

return bf1.multiply(bf2);

};

Future<BigFraction> future = mExecutorService.submit(task);

ThreadPoolExecutor

callable

callable

callable

callable

WorkQueue

Fixed

WorkerThreads

submit() run()

4.take()

5.run()

3.offer()

ExecutorService

20

Overview of Interfaces Related to ExecutorService
• ExecutorService.submit() can initiate an async computation in Java.

• It returns a Future implemented
as a FutureTask

• Async computation runs
in a worker thread

See upcoming part of this lesson on “Overview of Java ThreadPoolExecutor”

1.submit

(task)

Thread
(main thread)

Callable

BigFraction

Future

2.Return future

6.get()

Callable<BigFraction> task = () -> {

BigFraction bf1 = new BigFraction(f1);

BigFraction bf2 = new BigFraction(f2);

return bf1.multiply(bf2);

};

Future<BigFraction> future = mExecutorService.submit(task);

ThreadPoolExecutor

callable

callable

callable

callable

WorkQueue

Fixed

WorkerThreads

submit() run()

4.take()

5.run()

3.offer()

ExecutorService

21

Overview of Interfaces Related to ExecutorService
• When the async computation completes the future is triggered & the result is

available

See www.nurkiewicz.com/2013/02/javautilconcurrentfuture-basics.html

ThreadPoolExecutor

callable

callable

callable

callable

WorkQueue

Fixed

WorkerThreads

submit() run()

4.take()

5.run()

3.offer()

ExecutorService

1.submit

(task)

Thread
(main thread)

Callable

BigFraction

Future

2.Return future

6.get()
BigFraction result

= future.get();

http://www.nurkiewicz.com/2013/02/javautilconcurrentfuture-basics.html

22

Overview of Interfaces Related to ExecutorService
• When the async computation completes the future is triggered & the result is

available

• get() can block or (timed-)poll

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html#get

ThreadPoolExecutor

callable

callable

callable

callable

WorkQueue

Fixed

WorkerThreads

submit() run()

4.take()

5.run()

3.offer()

ExecutorService

1.submit

(task)

Thread
(main thread)

Callable

BigFraction

Future

2.Return future

6.get()
BigFraction result

= future.get();

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html#get--

23

Overview of Interfaces Related to ExecutorService
• When the async computation completes the future is triggered & the result is

available

• get() can block or (timed-)poll

• Results can occur in a different order
than the original calls were made

CALLER CALLEE

submit()1

future result1

submit()2

future result3

submit()3

future result2

future1

future2

future3

future result1

future result3

future result2

24

• Futures are applied in the
Active Object pattern

Overview of Interfaces Related to ExecutorService

See en.wikipedia.org/wiki/Active_object

1. Async computation
runs in a pool thread

2. Client uses future to obtain a result
only after async computation completes

http://en.wikipedia.org/wiki/Active_object

25

• Other variants of Future are applied by implementations of
the ExecutorService

Overview of Interfaces Related to ExecutorService

26See docs.oracle.com/javase/8/docs/api/java/util/concurrent/FutureTask.html

• Other variants of Future are applied by implementations of
the ExecutorService, e.g.

• FutureTask

• Conveys result from thread running a
task to thread(s) retrieving result

Overview of Interfaces Related to ExecutorService

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/FutureTask.html

27

• Other variants of Future are applied by implementations of
the ExecutorService, e.g.

• FutureTask

• RunnableFuture

• Execution of run() method will
complete the future & allow
access to its results

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/RunnableFuture.html

Overview of Interfaces Related to ExecutorService

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/RunnableFuture.html

28

• A CompletableFuture is an implementation of Future that supports dependent
actions triggered upon an async
operation completion

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

CompletableFuture isn’t part of
the Java Executor framework

Overview of Interfaces Related to ExecutorService

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

29

• A CompletableFuture is an implementation of Future that supports dependent
actions triggered upon an async
operation completion

• This topic is covered elsewhere

See www.dre.vanderbilt.edu/~schmidt/DigitalLearning

Overview of Interfaces Related to ExecutorService

http://www.dre.vanderbilt.edu/~schmidt/DigitalLearning

30

• ExecutorService also forms the basis for key Java
Executor framework subclasses

See src/share/classes/java/util/concurrent

Overview of Interfaces Related to ExecutorService

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/concurrent

31

End of Java Executor
Service: Related Interfaces

