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Learning Objectives in this Part of the Lesson
• Recognize the powerful features defined in 

the Java ExecutorService interface

• Understand other interfaces related 
to ExecutorService
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Overview of Interfaces 
Related To ExecutorService
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• ExecutorService uses several other interfaces to 
manage task lifecycles

Overview of Interfaces Related to ExecutorService
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• ExecutorService uses two interfaces to define tasks

Overview of Interfaces Related to ExecutorService



6See docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html

• ExecutorService uses two interfaces to define tasks, e.g.

• Runnable

• A “one-way” task that does not return a result

Overview of Interfaces Related to ExecutorService

Runnable is a functional interface

https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html
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• ExecutorService uses two interfaces to define tasks, e.g.

• Runnable

• Callable

• A “two-way” task that returns a result

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Callable.html

Overview of Interfaces Related to ExecutorService

Callable is also a functional interface

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Callable.html
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• ExecutorService uses two interfaces to define tasks, e.g.

• Runnable

• Callable

• A “two-way” task that returns a result

• Typically used to run two-way async tasks◘

Overview of Interfaces Related to ExecutorService
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• ExecutorService uses two interfaces to define tasks, e.g.

• Runnable

• Callable

• A “two-way” task that returns a result

• Typically used to run two-way async tasks

• Implements the Active Object pattern

See en.wikipedia.org/wiki/Active_object

Overview of Interfaces Related to ExecutorService

Decouples the thread that invokes a method 
from the thread that executes the method

http://en.wikipedia.org/wiki/Active_object


10See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html

• ExecutorService uses the Future interface to represent

& control a task’s lifecycle

Overview of Interfaces Related to ExecutorService

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html
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• ExecutorService uses the Future interface to represent

& control a task’s lifecycle, e.g., 

• Can be used to retrieve a two-way task’s result

Overview of Interfaces Related to ExecutorService
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• ExecutorService uses the Future interface to represent

& control a task’s lifecycle, e.g., 

• Can be used to retrieve a two-way task’s result

• Can be tested for completion

Overview of Interfaces Related to ExecutorService
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• ExecutorService uses the Future interface to represent

& control a task’s lifecycle, e.g., 

• Can be used to retrieve a two-way task’s result

• Can be tested for completion

• Can be tested for cancellation & cancelled

Overview of Interfaces Related to ExecutorService
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Overview of Interfaces Related to ExecutorService

1. Asynchronous 
computation

2. Result obtained only after 
the computation completes

See en.wikipedia.org/wiki/Futures_and_promises

• A Java future defines a proxy to represent & control the result of an async 
computation.

https://en.wikipedia.org/wiki/Futures_and_promises
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Overview of Interfaces Related to ExecutorService

See www.citygrafx.com/table-numbers-table-markers

Table tent #’s are 
a human-known-
use of futures!

• A Java future defines a proxy to represent & control the result of an async 
computation.

http://www.citygrafx.com/table-numbers-table-markers
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Overview of Interfaces Related to ExecutorService

Table tent #’s are 
a human-known-
use of futures!

e.g., McDonald’s vs Wendy’s model of preparing fast food

• A Java future defines a proxy to represent & control the result of an async 
computation.
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Overview of Interfaces Related to ExecutorService
• ExecutorService.submit() can initiate an async computation in Java.

See next part of this lesson on “Java ExecutorService: Key Methods”
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1.submit

(task)

Callable

Overview of Interfaces Related to ExecutorService
• ExecutorService.submit() can initiate an async computation in Java.

Callable<BigFraction> task = () -> {
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Overview of Interfaces Related to ExecutorService
• ExecutorService.submit() can initiate an async computation in Java.

• It returns a Future implemented
as a FutureTask

See upcoming lesson on “Java FutureTask”
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Overview of Interfaces Related to ExecutorService
• ExecutorService.submit() can initiate an async computation in Java.

• It returns a Future implemented
as a FutureTask

• Async computation runs 
in a worker thread

See upcoming part of this lesson on “Overview of Java ThreadPoolExecutor”
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Overview of Interfaces Related to ExecutorService
• When the async computation completes the future is triggered & the result is 

available

See www.nurkiewicz.com/2013/02/javautilconcurrentfuture-basics.html

ThreadPoolExecutor

callable

callable

callable

callable

WorkQueue

Fixed

WorkerThreads

submit() run()

4.take()

5.run()

3.offer()

ExecutorService

1.submit

(task)

Thread
(main thread)

Callable

BigFraction

Future

2.Return future

6.get()
BigFraction result 

= future.get();

http://www.nurkiewicz.com/2013/02/javautilconcurrentfuture-basics.html
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Overview of Interfaces Related to ExecutorService
• When the async computation completes the future is triggered & the result is 

available

• get() can block or (timed-)poll

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html#get
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https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html#get--
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Overview of Interfaces Related to ExecutorService
• When the async computation completes the future is triggered & the result is 

available

• get() can block or (timed-)poll

• Results can occur in a different order 
than the original calls were made

CALLER CALLEE
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• Futures are applied in the 
Active Object pattern

Overview of Interfaces Related to ExecutorService

See en.wikipedia.org/wiki/Active_object

1. Async computation 
runs in a pool thread

2. Client uses future to obtain a result 
only after async computation completes

http://en.wikipedia.org/wiki/Active_object
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• Other variants of Future are applied by implementations of 
the ExecutorService

Overview of Interfaces Related to ExecutorService



26See docs.oracle.com/javase/8/docs/api/java/util/concurrent/FutureTask.html

• Other variants of Future are applied by implementations of 
the ExecutorService, e.g.

• FutureTask

• Conveys result from thread running a
task to thread(s) retrieving result

Overview of Interfaces Related to ExecutorService

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/FutureTask.html
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• Other variants of Future are applied by implementations of 
the ExecutorService, e.g.

• FutureTask

• RunnableFuture

• Execution of run() method will 
complete the future & allow 
access to its results

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/RunnableFuture.html

Overview of Interfaces Related to ExecutorService

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/RunnableFuture.html
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• A CompletableFuture is an implementation of Future that supports dependent 
actions triggered upon an async
operation completion

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

CompletableFuture isn’t part of 
the Java Executor framework

Overview of Interfaces Related to ExecutorService

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
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• A CompletableFuture is an implementation of Future that supports dependent 
actions triggered upon an async
operation completion

• This topic is covered elsewhere

See www.dre.vanderbilt.edu/~schmidt/DigitalLearning

Overview of Interfaces Related to ExecutorService

http://www.dre.vanderbilt.edu/~schmidt/DigitalLearning
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• ExecutorService also forms the basis for key Java 
Executor framework subclasses

See src/share/classes/java/util/concurrent

Overview of Interfaces Related to ExecutorService

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/concurrent
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End of Java Executor
Service: Related Interfaces


