
Java ExecutorService: Introduction

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software 

Integrated Systems

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Recognize the powerful features defined 

in the Java ExecutorService interface



3

Overview of the 
ExecutorService Interface



4

• Extends Executor

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html

Overview of the ExecutorService Interface

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html


5

• Extends Executor

• Submit 1+ tasks & return
futures for these tasks

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html

Overview of the ExecutorService Interface

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html


6

• Extends Executor

• Submit 1+ tasks & return
futures for these tasks

• Manage lifecycle of tasks 
& executor service itself

• e.g., interrupts worker 
threads in a pool

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html

Overview of the ExecutorService Interface

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html


7

• A task is a unit of computation that (ideally) does not depend on the state, 
result, or side effects of other tasks

Overview of the ExecutorService Interface

See www.javaworld.com/article/2071822/book-excerpt--executing-tasks-in-threads.html

http://www.javaworld.com/article/2071822/book-excerpt--executing-tasks-in-threads.html


8

• A task is a unit of computation that (ideally) does not depend on the state, 
result, or side effects of other tasks

• A task has four phases in its
lifecycle

Overview of the ExecutorService Interface

4. Completed

1. Created 2. Submitted

3. Started



9

• A task is a unit of computation that (ideally) does not depend on the state, 
result, or side effects of other tasks

• A task has four phases in its
lifecycle

1. Created

• A new task is instantiated

Overview of the ExecutorService Interface

4. Completed

1. Created 2. Submitted

3. Started



10

• A task is a unit of computation that (ideally) does not depend on the state, 
result, or side effects of other tasks

• A task has four phases in its
lifecycle

1. Created

2. Submitted

• A task is given to an 
executor service to run

Overview of the ExecutorService Interface

4. Completed

1. Created 2. Submitted

3. Started



11

• A task is a unit of computation that (ideally) does not depend on the state, 
result, or side effects of other tasks

• A task has four phases in its
lifecycle

1. Created

2. Submitted

3. Started

• A task is executed by a 
worker thread in the 
executor service

Overview of the ExecutorService Interface

4. Completed

1. Created 2. Submitted

3. Started



12

• A task is a unit of computation that (ideally) does not depend on the state, 
result, or side effects of other tasks

• A task has four phases in its
lifecycle

1. Created

2. Submitted

3. Started

4. Completed

• A task is finished (un)successfully 
or cancelled

Overview of the ExecutorService Interface

4. Completed

1. Created 2. Submitted

3. Started



13

End of Java Executor
Service: Introduction


