
Java Executor:

Evaluating Pros & Cons

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Recognize the simple/single feature provided

by the Java Executor interface

• Understand various implementation choices
for the Executor interface

• Learn how to program a simple prime checker
app using the Java Executor interface

• Evaluate the pros & cons of the prime checker
app

3

Evaluating the
PrimeChecker App

4

Fixed-sized Thread Pool

• The Java Executor interface enables the transparent tuning & replacement of
& type of threads wrt the prime checker app logic itself

Evaluating the PrimeChecker App

new Random().longs(count, sMAX_VALUE - count, sMAX_VALUE)

.forEach(randomNumber -> mExecutor.execute

(new PrimeRunnable(this, randomNumber)));

Cached (Variable-

sized) Thread Pool Work-stealing Thread Pool

5

• However, Java Executor has some restrictions

Evaluating the PrimeChecker App

6

• However, Java Executor has some restrictions, e.g.

• One-way semantics of runnables tightly
couple PrimeRunnable with MainActivity

class PrimeRunnable implements Runnable {

...

private final MainActivity mActivity;

...

public PrimeRunnable(MainActivity activity)

{ mActivity = activity; ... }

public void run() {

... mActivity.done(); ...

}

}

This tight coupling complicates runtime configuration changes

Evaluating the PrimeChecker App

7

• However, Java Executor has some restrictions, e.g.

• One-way semantics of runnables tightly
couple PrimeRunnable with MainActivity

• isPrime() tightly coupled w/PrimeRunnable

class PrimeRunnable implements Runnable {

...

long isPrime(long n) {

if (n > 3)

for (long factor = 2;

factor <= n / 2; ++factor)

if (n / factor * factor == n)

return factor;

return 0;

} ...

e.g., non-extensible & primality check is applied even if results are computed

Evaluating the PrimeChecker App

8

• However, Java Executor has some restrictions, e.g.

• One-way semantics of runnables tightly
couple PrimeRunnable with MainActivity

• isPrime() tightly coupled w/PrimeRunnable

• The lack of lifecycle operations on
Java Executor

Evaluating the PrimeChecker App

9

• However, Java Executor has some restrictions, e.g.

• One-way semantics of runnables tightly
couple PrimeRunnable with MainActivity

• isPrime() tightly coupled w/PrimeRunnable

• The lack of lifecycle operations on
Java Executor, e.g.

• Can’t shutdown the executor or
interrupt/cancel running tasks

Evaluating the PrimeChecker App

10

• However, Java Executor has some restrictions, e.g.

• One-way semantics of runnables tightly
couple PrimeRunnable with MainActivity

• isPrime() tightly coupled w/PrimeRunnable

• The lack of lifecycle operations on
Java Executor, e.g.

• Can’t shutdown the executor or
interrupt/cancel running tasks

• Can’t handle runtime configuration
changes gracefully

• e.g., must restart processing
from the beginning

Evaluating the PrimeChecker App

11

• However, Java Executor has some restrictions, e.g.

• One-way semantics of runnables tightly
couple PrimeRunnable with MainActivity

• isPrime() tightly coupled w/PrimeRunnable

• The lack of lifecycle operations on
Java Executor, e.g.

• Can’t shutdown the executor or
interrupt/cancel running tasks

• Can’t handle runtime configuration
changes gracefully

• The Java Executor is often too simple
for its own good!

Evaluating the PrimeChecker App

12

End of Java Executor:
Evaluating Pros & Cons

