
Java Semaphore:

Coordinating Threads

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Module
• Understand the concept of semaphores

• Be aware of the two types of
semaphores

• Note a human known use of
semaphores

• Recognize the structure & functionality
of Java Semaphore

• Know the key methods defined by the
Java Semaphore class

• Learn how Java semaphores enable
multiple threads to

• Mediate access to a limited #
of shared resources

• Coordinate the order in which
operations occur

1 Semaphores 0

run()

ping :

PingPongThread

pong :

PingPongThread

print("ping")

run()

print("pong")

3

Applying Java Semaphores
to Coordinate Threads

4

• The Android ping-pong app coordinates thread interactions via various Java
synchronizers, including Java semaphores

• i.e., these two threads alternate printing “ping”
& “pong” on the display

run()

ping :

PingPongThread

pong :

PingPongThread

print("ping")

run()

print("pong")

Applying Java Semaphores to Coordinate Threads

1 Semaphores 0

See github.com/douglascraigschmidt/POSA/tree/master/ex/M3/PingPong

https://github.com/douglascraigschmidt/POSA/tree/master/ex/M3/PingPong

5

• UML sequence diagram for the ping-pong app

join()

run()

start() run()

new()

new()

acquire()

run()

release()

start()

pong :

PingPongThread

ping :

PingPongThread

acquire()

release()

join()

println()

println()

Applying Java Semaphores to Coordinate Threads

: Play

PingPongThread
pingSem :
Semaphore

pongSem :
Semaphore

This app can be configured to use a pair of semaphores that coordinate the
order in which the “ping” & “pong” threads are called to play ping-pong

6

• UML sequence diagram for the ping-pong app

Applying Java Semaphores to Coordinate Threads

The PlayPingPongThread object starts two threads, ping & pong,
that alternate printing "Ping" & "Pong", respectively, on the display

run()

start()

new()

new()

start()

pong :

PingPongThread

ping :

PingPongThread

: Play

PingPongThread

7

• UML sequence diagram for the ping-pong app

run()

start() run()

new()

new()

run()
start()

pong :

PingPongThread

ping :

PingPongThread

: Play

PingPongThread

Applying Java Semaphores to Coordinate Threads

The PingPongThread class implements the core ping-pong algorithm, but
defers synchronization aspects to subclasses via the Template Method pattern

8

• UML sequence diagram for the ping-pong app

run()

start() run()

new()

new()

run()
start()

pong :

PingPongThread
pingSem :
Semaphore

ping :

PingPongThread
pongSem :
Semaphore

The pingSem & PongSem semaphores coordinate the order in
which the “ping” & “pong” threads are called to play ping-pong

: Play

PingPongThread

Applying Java Semaphores to Coordinate Threads

Semaphore pingSem =

new Semaphore(1);

Semaphore pongSem =

new Semaphore(0);

Permit count
initialized to

“not-acquired”

Permit count
initialized to
“acquired”

9

• UML sequence diagram for the ping-pong app

run()

start() run()

new()

new()

acquire()

run()

release()

start()

pong :

PingPongThread

ping :

PingPongThread

acquire()

release()

println()

println()

: Play

PingPongThread

Applying Java Semaphores to Coordinate Threads

This example does not “fully bracket” acquiring & releasing permits, i.e.,
the thread acquiring a semaphore is different from the thread releasing it!

pingSem :
Semaphore

pongSem :
Semaphore

10

• UML sequence diagram for the ping-pong app

run()

start() run()

new()

new()

run()
start()

pong :

PingPongThread

ping :

PingPongThread

: Play

PingPongThread

Applying Java Semaphores to Coordinate Threads

This example does not “fully bracket” acquiring & releasing permits, i.e.,
the thread acquiring a semaphore is different from the thread releasing it!

pingSem :
Semaphore

pongSem :
Semaphore

private final Semaphore mMine;

private final Semaphore mOther;

...

protected void acquire() { mMine.acquire(); }

protected void release() { mOther.release(); }

Block until
semaphore
is acquired

Release the other semaphore

11

• UML sequence diagram for the ping-pong app

join()

run()

start() run()

new()

new()

acquire()

run()

release()

start()

pong :

PingPongThread

: Play

PingPongThread

ping :

PingPongThread

acquire()

release()

join()

println()

println()

PlayPingPongThread joins with the ping & pong threads once they finish

Applying Java Semaphores to Coordinate Threads

pingSem :
Semaphore

pongSem :
Semaphore

12

End of Java Semaphore:
Coordinating Threads

