
Java ReentrantLock:

Structure & Functionality

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand the concept of mutual exclusion in concurrent programs

• Note a human-known use of mutual exclusion

• Recognize the structure & functionality of Java ReentrantLock

3

Learning Objectives in this Part of the Lesson
• Understand the concept of mutual exclusion in concurrent programs

• Note a human-known use of mutual exclusion

• Recognize the structure & functionality of Java ReentrantLock

• Be aware of reentrant mutex semantics

unlocked

(holdCount = 0)

Critical Section

locked

(holdCount = 1)

T1

lock()

4

Overview of
ReentrantLock

5See docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantLock.html

Overview of ReentrantLock
• Provide mutual exclusion to

concurrent Java programs
public class ReentrantLock

implements Lock,

java.io.Serializable {

...

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantLock.html

6See docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Lock.html

• Provide mutual exclusion to
concurrent Java programs

• Implements Lock interface

Overview of ReentrantLock
public class ReentrantLock

implements Lock,

java.io.Serializable {

...

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Lock.html

7

• Applies the Bridge pattern

See en.wikipedia.org/wiki/Bridge_pattern

Overview of ReentrantLock
public class ReentrantLock

implements Lock,

java.io.Serializable {

...

ReentrantLock Sync

FairSync NonFairSync

Decouples its interface from its
implementation so fair & non-fair

semantics can be supported uniformly

http://en.wikipedia.org/wiki/Bridge_pattern

8

Overview of ReentrantLock
• Applies the Bridge pattern

• Locking handled by Sync
Implementor hierarchy

public class ReentrantLock

implements Lock,

java.io.Serializable {

...

/** Performs sync mechanics */

final Sync sync;

9
See docs.oracle.com/javase/8/docs/api/java/util/

concurrent/locks/AbstractQueuedSynchronizer.html

Overview of ReentrantLock
• Applies the Bridge pattern

• Locking handled by Sync
Implementor hierarchy

• Inherits functionality from
AbstractQueuedSynchronizer

public class ReentrantLock

implements Lock,

java.io.Serializable {

...

/** Performs sync mechanics */

final Sync sync;

/** Sync implementation for

ReentrantLock */

abstract static class

Sync extends

AbstractQueuedSynchronizer

{ ... }

...

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/AbstractQueuedSynchronizer.html

10See gee.cs.oswego.edu/dl/papers/aqs.pdf

Overview of ReentrantLock
• Applies the Bridge pattern

• Locking handled by Sync
Implementor hierarchy

• Inherits functionality from
AbstractQueuedSynchronizer

• Many Java synchronizers
based on FIFO wait queues
use this framework

public class ReentrantLock

implements Lock,

java.io.Serializable {

...

/** Performs sync mechanics */

final Sync sync;

/** Sync implementation for

ReentrantLock */

abstract static class

Sync extends

AbstractQueuedSynchronizer

{ ... }

...

http://gee.cs.oswego.edu/dl/papers/aqs.pdf

11

Overview of ReentrantLock
• Applies the Bridge pattern

• Locking handled by Sync
Implementor hierarchy

• Inherits functionality from
AbstractQueuedSynchronizer

• Defines NonFairSync &
FairSync subclasses with
non-FIFO & FIFO semantics

public class ReentrantLock

implements Lock,

java.io.Serializable {

...

/** Performs sync mechanics */

final Sync sync;

/** Sync implementation for

ReentrantLock */

abstract static class

Sync extends

AbstractQueuedSynchronizer

{ ... }

static final class NonFairSync

extends Sync { ... }

static final class FairSync

extends Sync { ... }

See src/share/classes/java/util/concurrent/locks/ReentrantLock.java

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/concurrent/locks/ReentrantLock.java

12

Overview of ReentrantLock
• Applies the Bridge pattern

• Locking handled by Sync
Implementor hierarchy

• Constructor enables fair vs.
non-fair lock acquisition model

public class ReentrantLock

implements Lock,

java.io.Serializable {

...

public ReentrantLock

(boolean fair) {

sync = fair

? new FairSync()

: new NonfairSync();

}

...

This param determines whether
FairSync or NonfairSync is used

13

Overview of ReentrantLock
• Applies the Bridge pattern

• Locking handled by Sync
Implementor hierarchy

• Constructor enables fair vs.
non-fair lock acquisition model

• These models apply the same
pattern used by Semaphore &
ReentrantReadWriteLock

public class ReentrantLock

implements Lock,

java.io.Serializable {

...

public ReentrantLock

(boolean fair) {

sync = fair

? new FairSync()

: new NonfairSync();

}

...

See upcoming lessons on “Java Semaphore” & “Java ReentrantReadWriteLock”

14

Overview of ReentrantLock
• Applies the Bridge pattern

• Locking handled by Sync
Implementor hierarchy

• Constructor enables fair vs.
non-fair lock acquisition model

• These models apply the same
pattern used by Semaphore &
ReentrantReadWriteLock

public class ReentrantLock

implements Lock,

java.io.Serializable {

...

public ReentrantLock

(boolean fair) {

sync = fair

? new FairSync()

: new NonfairSync();

}

... Ensures strict “FIFO” fairness,
at the expense of performance

15

Overview of ReentrantLock
• Applies the Bridge pattern

• Locking handled by Sync
Implementor hierarchy

• Constructor enables fair vs.
non-fair lock acquisition model

• These models apply the same
pattern used by Semaphore &
ReentrantReadWriteLock

public class ReentrantLock

implements Lock,

java.io.Serializable {

...

public ReentrantLock

(boolean fair) {

sync = fair

? new FairSync()

: new NonfairSync();

}

... Enables faster performance
at the expense of fairness

16

Overview of ReentrantLock
• Applies the Bridge pattern

• Locking handled by Sync
Implementor hierarchy

• Constructor enables fair vs.
non-fair lock acquisition model

• These models apply the same
pattern used by Semaphore &
ReentrantReadWriteLock

public class ReentrantLock

implements Lock,

java.io.Serializable {

...

public ReentrantLock

(boolean fair) {

sync = fair

? new FairSync()

: new NonfairSync();

}

public ReentrantLock() {

sync = new NonfairSync();

}

...

The default behavior favors
performance over fairness

17

Overview of ReentrantLock
• Applies the Bridge pattern

• Locking handled by Sync
Implementor hierarchy

• Constructor enables fair vs.
non-fair lock acquisition model

• These models apply the same
pattern used by Semaphore &
ReentrantReadWriteLock

FairSync is generally much slower than
NonfairSync, so use it accordingly

public class ReentrantLock

implements Lock,

java.io.Serializable {

...

public ReentrantLock

(boolean fair) {

sync = fair

? new FairSync()

: new NonfairSync();

}

public ReentrantLock() {

sync = new NonfairSync();

}

...

18

void lock() – Acquires the lock

void unlock() – Attempts to release

this lock

void lockInterruptibly() – Acquires

the lock unless the current

thread is interrupted

boolean tryLock() – Acquires the lock

only if it is not held by another

thread at the time of invocation

boolean tryLock(long timeout, Timeunit

unit) – Acquires the lock if it is

not held by another thread

within the given waiting time

and the current thread has not

been interrupted

Overview of ReentrantLock
• ReentrantLock is similar to the

monitor lock provided by Java’s
built-in monitor objects

See upcoming lessons on “Java Built-in Monitor Object”

http://developer.android.com/reference/java/util/concurrent/locks/ReentrantLock.htmllock()
http://developer.android.com/reference/java/util/concurrent/locks/ReentrantLock.htmlunlock()
http://developer.android.com/reference/java/util/concurrent/locks/ReentrantLock.htmllockInterruptibly()
http://developer.android.com/reference/java/util/concurrent/locks/ReentrantLock.htmltryLock()
http://developer.android.com/reference/java/util/concurrent/locks/ReentrantLock.htmltryLock(long, java.util.concurrent.TimeUnit)

19

Overview of ReentrantLock
• ReentrantLock is similar to the

monitor lock provided by Java’s
built-in monitor objects

• But also provides extended
capabilities

void lock() – Acquires the lock

void unlock() – Attempts to release

this lock

void lockInterruptibly() – Acquires

the lock unless the current

thread is interrupted

boolean tryLock() – Acquires the lock

only if it is not held by another

thread at the time of invocation

boolean tryLock(long timeout, Timeunit

unit) – Acquires the lock if it is

not held by another thread

within the given waiting time

and the current thread has not

been interrupted

http://developer.android.com/reference/java/util/concurrent/locks/ReentrantLock.htmllock()
http://developer.android.com/reference/java/util/concurrent/locks/ReentrantLock.htmlunlock()
http://developer.android.com/reference/java/util/concurrent/locks/ReentrantLock.htmllockInterruptibly()
http://developer.android.com/reference/java/util/concurrent/locks/ReentrantLock.htmltryLock()
http://developer.android.com/reference/java/util/concurrent/locks/ReentrantLock.htmltryLock(long, java.util.concurrent.TimeUnit)

20

Overview of ReentrantLock
• ReentrantLock is similar to the

monitor lock provided by Java’s
built-in monitor objects

• But also provides extended
capabilities

void lock() – Acquires the lock

void unlock() – Attempts to release

this lock

void lockInterruptibly() – Acquires

the lock unless the current

thread is interrupted

boolean tryLock() – Acquires the lock

only if it is not held by another

thread at the time of invocation

boolean tryLock(long timeout, Timeunit

unit) – Acquires the lock if it is

not held by another thread

within the given waiting time

and the current thread has not

been interrupted

In contrast, Java’s synchronized methods/statements are not interruptible

http://developer.android.com/reference/java/util/concurrent/locks/ReentrantLock.htmllockInterruptibly()

21

Overview of ReentrantLock
• ReentrantLock is similar to the

monitor lock provided by Java’s
built-in monitor objects

• But also provides extended
capabilities

void lock() – Acquires the lock

void unlock() – Attempts to release

this lock

void lockInterruptibly() – Acquires

the lock unless the current

thread is interrupted

boolean tryLock() – Acquires the lock

only if it is not held by another

thread at the time of invocation

boolean tryLock(long timeout, Timeunit

unit) – Acquires the lock if it is

not held by another thread

within the given waiting time

and the current thread has not

been interrupted

Likewise, Java’s synchronized methods/statements aren’t non-blocking

http://developer.android.com/reference/java/util/concurrent/locks/ReentrantLock.htmltryLock()
http://developer.android.com/reference/java/util/concurrent/locks/ReentrantLock.htmltryLock(long, java.util.concurrent.TimeUnit)

22

Overview of Reentrant
Mutex Semantics

23See en.wikipedia.org/wiki/Reentrant_mutex

unlocked

(holdCount = 0)

Critical Section

locked

(holdCount = 1)

T1

lock()

• A ReentrantLock supports “reentrant
mutex” semantics

Overview of Reentrant Mutex Semantics

http://en.wikipedia.org/wiki/Reentrant_mutex

24

unlocked

(holdCount = 0)

Critical Section

locked

(holdCount = 1)

T1

lock()

• A ReentrantLock supports “reentrant
mutex” semantics

• The thread that hold the mutex can
reacquire it without self-deadlock

Overview of Reentrant Mutex Semantics

25

unlocked

(holdCount = 0)

Critical Section

locked

(holdCount = 2)

T1

• A ReentrantLock supports “reentrant
mutex” semantics

• The thread that hold the mutex can
reacquire it without self-deadlock

lock()

Overview of Reentrant Mutex Semantics

26

• Reentrant mutex semantics add a
bit more overhead relative to non-
recursive semantics due to extra
software logic & synchronization

Overview of Reentrant Mutex Semantics

See src/share/classes/java/util/concurrent/locks/ReentrantLock.java

boolean nonfairTryAcquire

(int acquires) {

Thread t =

Thread.currentThread();

int c = getState();

if (c == 0) {

if (compareAndSetState(0,

acquires)) {

setExclusiveOwnerThread(t);

return true;

}

} else if (t ==

getExclusiveOwnerThread()) {

int nextc = c + acquires;

...

setState(nextc);

return true;

}

return false;

}

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/concurrent/locks/ReentrantLock.java

27

• Reentrant mutex semantics add a
bit more overhead relative to non-
recursive semantics due to extra
software logic & synchronization

Overview of Reentrant Mutex Semantics
boolean nonfairTryAcquire

(int acquires) {

Thread t =

Thread.currentThread();

int c = getState();

if (c == 0) {

if (compareAndSetState(0,

acquires)) {

setExclusiveOwnerThread(t);

return true;

}

} else if (t ==

getExclusiveOwnerThread()) {

int nextc = c + acquires;

...

setState(nextc);

return true;

}

return false;

}

Atomically read the
current hold count

28

• Reentrant mutex semantics add a
bit more overhead relative to non-
recursive semantics due to extra
software logic & synchronization

Overview of Reentrant Mutex Semantics
boolean nonfairTryAcquire

(int acquires) {

Thread t =

Thread.currentThread();

int c = getState();

if (c == 0) {

if (compareAndSetState(0,

acquires)) {

setExclusiveOwnerThread(t);

return true;

}

} else if (t ==

getExclusiveOwnerThread()) {

int nextc = c + acquires;

...

setState(nextc);

return true;

}

return false;

}

Atomically acquire the
lock if it’s available

29

• Reentrant mutex semantics add a
bit more overhead relative to non-
recursive semantics due to extra
software logic & synchronization

Overview of Reentrant Mutex Semantics
boolean nonfairTryAcquire

(int acquires) {

Thread t =

Thread.currentThread();

int c = getState();

if (c == 0) {

if (compareAndSetState(0,

acquires)) {

setExclusiveOwnerThread(t);

return true;

}

} else if (t ==

getExclusiveOwnerThread()) {

int nextc = c + acquires;

...

setState(nextc);

return true;

}

return false;

}

Simply increment lock
count if the current
thread is lock owner

30See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex24

• Reentrant mutex semantics are useful
for frameworks that hold locks during
callbacks to user code

cDTimer: CountDownTimer

start()

onTick()

onFinish()

timerHandler

run()

cancel()

mLock.lock();

try {

mCancelled = true;

mSchedExeSvc

.shutdownNow();

} finally {

mLock.unlock();

}
mLock.lock();

try {

...

onTick(millisLeft);

...

} finally {

mLock.unlock();

}

if (...)

cancel();

mLock

Overview of Reentrant Mutex Semantics

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex24

31

• Reentrant mutex semantics are useful
for frameworks that hold locks during
callbacks to user code

cDTimer: CountDownTimer

start()

onTick()

onFinish()

timerHandler

run()

cancel()

mLock.lock();

try {

mCancelled = true;

mSchedExeSvc

.shutdownNow();

} finally {

mLock.unlock();

}
mLock.lock();

try {

...

onTick(millisLeft);

...

} finally {

mLock.unlock();

}

if (...)

cancel();

mLock

Overview of Reentrant Mutex Semantics

Schedule a countdown until a time in the
future, with regular notifications on intervals
along the way via the onTick() hook method

32

• Reentrant mutex semantics are useful
for frameworks that hold locks during
callbacks to user code

cDTimer: CountDownTimer

start()

onTick()

onFinish()

timerHandler
cancel()

mLock.lock();

try {

mCancelled = true;

mSchedExeSvc

.shutdownNow();

} finally {

mLock.unlock();

}
mLock.lock();

try {

...

onTick(millisLeft);

...

} finally {

mLock.unlock();

}

if (...)

cancel();

Framework calls onTick() hook method in
a background thread with the mLock held

mLock

Overview of Reentrant Mutex Semantics

run()

33

• Reentrant mutex semantics are useful
for frameworks that hold locks during
callbacks to user code

cDTimer: CountDownTimer

start()

onTick()

onFinish()

timerHandler

run()

cancel()

mLock.lock();

try {

mCancelled = true;

mSchedExeSvc

.shutdownNow();

} finally {

mLock.unlock();

}
mLock.lock();

try {

...

onTick(millisLeft);

...

} finally {

mLock.unlock();

}

if (...)

cancel();

The app can override the onTick() hook
method to conditionally call cancel()

mLock

Overview of Reentrant Mutex Semantics

34

• Reentrant mutex semantics are useful
for frameworks that hold locks during
callbacks to user code

cDTimer: CountDownTimer

start()

onTick()

onFinish()

timerHandler

run()

cancel()

mLock.lock();

try {

mCancelled = true;

mSchedExeSvc

.shutdownNow();

} finally {

mLock.unlock();

}
mLock.lock();

try {

...

onTick(millisLeft);

...

} finally {

mLock.unlock();

}

if (...)

cancel();

cancel() also acquires mLock, which must
be recursive or self-deadlock will occur

mLock

Overview of Reentrant Mutex Semantics

35

• Reentrant mutex semantics are useful
for frameworks that hold locks during
callbacks to user code

cDTimer: CountDownTimer

start()

onTick()

onFinish()

timerHandler

run()

cancel()

mLock.lock();

try {

mCancelled = true;

mSchedExeSvc

.shutdownNow();

} finally {

mLock.unlock();

}
mLock.lock();

try {

...

onTick(millisLeft);

...

} finally {

mLock.unlock();

}

if (...)

cancel();

mLock

Overview of Reentrant Mutex Semantics

unlock() will be called multiple
times to unwind the reentrant lock

36

End of Java ReentrantLock:
Structure & Functionality

