
Java Atomic Classes & Operations:

Usage Considerations

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand how Java atomic classes &

operations provide concurrent programs
with lock-free, thread-safe mechanisms
to read from & write to single variables

• Note a human known use of atomic
operations

• Know how Java atomic operations are
implemented

• Recognize how the Java AtomicLong &
AtomicBoolean classes are implemented

• Be aware of how to apply Java
AtomicLong in practice

• Appreciate Java atomic class & operation
usage considerations

3

Usage Considerations for
Java Atomic Operations

4See en.wikipedia.org/wiki/Busy_waiting

• Programs should use atomic operations carefully since they “busy wait”

Usage Considerations for Java Atomic Operations

http://en.wikipedia.org/wiki/Busy_waiting

5
See www.ibm.com/support/knowledgecenter/en/SS3KLZ/

com.ibm.java.diagnostics.healthcenter.doc/topics/resolving.html

• Programs should use atomic operations carefully since they “busy wait”

• Busy waiting needlessly wastes
CPU cycles if contention is high

Usage Considerations for Java Atomic Operations

http://www.ibm.com/support/knowledgecenter/en/SS3KLZ/com.ibm.java.diagnostics.healthcenter.doc/topics/resolving.html

6See www.youtube.com/watch?v=sq0MX3fHkro

• Programs should use atomic operations carefully since they “busy wait”

• Busy waiting needlessly wastes
CPU cycles if contention is high

• However, some “spinning” is
useful in multi-core processors

Usage Considerations for Java Atomic Operations

http://www.youtube.com/watch?v=sq0MX3fHkro

7See www.youtube.com/watch?v=sq0MX3fHkro

• Programs should use atomic operations carefully since they “busy wait”

• Busy waiting needlessly wastes
CPU cycles if contention is high

• However, some “spinning” is
useful in multi-core processors

• e.g., due to context switching
overhead of sleep locks

Usage Considerations for Java Atomic Operations

http://www.youtube.com/watch?v=sq0MX3fHkro

8See docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicBoolean.html#compareAndSet

• The compareAndSet*() methods in the various Java Atomic* classes provide
a portable means of accessing low-level CAS operations

Usage Considerations for Java Atomic Operations

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicBoolean.html#compareAndSet-boolean-boolean-

9

• The compareAndSet*() methods in the various Java Atomic* classes provide
a portable means of accessing low-level CAS operations

• Keep in mind that these methods are intended for very specific use cases

Usage Considerations for Java Atomic Operations

class Random ... {

public Random()

{ this(seedUniquifier() ^ System.nanoTime()); }

private static long seedUniquifier(){

for (;;) {

long s = seedUniquifier.get();

long next = s * 181783497276652981L;

if (seedUniquifier.compareAndSet(s, next))

return next;

}

}

private static final AtomicLong seedUniquifier =

new AtomicLong(8682522807148012L);

compareAndSet() is only called once per loop, per thread & only succeeds in one thread

Try to set the computed next seed atomically, which
will succeed only if s is still the current seed value

10

End of Atomic Classes &
Operations: Usage

Considerations

