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Learning Objectives in this Part of the Lesson
• Understand how Java atomic classes & 

operations provide concurrent programs 
with lock-free, thread-safe mechanisms 
to read from & write to single variables 

• Note a human known use of atomic 
operations

• Know how Java atomic operations are
implemented

• Recognize how the Java AtomicLong & 
AtomicBoolean classes are implemented

• Be aware of how to apply Java 
AtomicLong in practice

• Appreciate Java atomic class & operation 
usage considerations
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Usage Considerations for 
Java Atomic Operations



4See en.wikipedia.org/wiki/Busy_waiting

• Programs should use atomic operations carefully since they “busy wait” 
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See www.ibm.com/support/knowledgecenter/en/SS3KLZ/

com.ibm.java.diagnostics.healthcenter.doc/topics/resolving.html

• Programs should use atomic operations carefully since they “busy wait”

• Busy waiting needlessly wastes
CPU cycles if contention is high 
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6See www.youtube.com/watch?v=sq0MX3fHkro

• Programs should use atomic operations carefully since they “busy wait” 

• Busy waiting needlessly wastes
CPU cycles if contention is high 

• However, some “spinning” is
useful in multi-core processors 
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7See www.youtube.com/watch?v=sq0MX3fHkro

• Programs should use atomic operations carefully since they “busy wait” 

• Busy waiting needlessly wastes
CPU cycles if contention is high 

• However, some “spinning” is
useful in multi-core processors 

• e.g., due to context switching
overhead of sleep locks
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8See docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicBoolean.html#compareAndSet

• The compareAndSet*() methods in the various Java Atomic* classes provide 
a portable means of accessing low-level CAS operations 
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• The compareAndSet*() methods in the various Java Atomic* classes provide 
a portable means of accessing low-level CAS operations 

• Keep in mind that these methods are intended for very specific use cases
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class Random ... {

public Random() 

{ this(seedUniquifier() ^ System.nanoTime()); }

private static long seedUniquifier(){    

for (;;) {

long s = seedUniquifier.get();

long next = s * 181783497276652981L;

if (seedUniquifier.compareAndSet(s, next))

return next;

}

}

private static final AtomicLong seedUniquifier = 

new AtomicLong(8682522807148012L);

compareAndSet() is only called once per loop, per thread & only succeeds in one thread

Try to set the computed next seed atomically, which 
will succeed only if s is still the current seed value
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End of Atomic Classes & 
Operations: Usage 

Considerations


