Java Atomic Classes & Operations:
Usage Considerations

Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderbilt University
Nashuille, Tennessee, USA



mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

I will adopt Best Bractices
I will adopt Best Prachices
I will adogt Best Prachices
1 will adopt Best Brachice:
I will adopt Best Practices
1 will adopt Best Brachices
] will adopt Best Practices

I will adopt Best Brackices
] will adopt Best Practices
I will adogt Best Bractices
I will adopt Best Prachices

« Appreciate Java atomic class & operation
usage considerations




Usage Considerations for
Java Atomic Operations




Usage Considerations for Java Atomic Operations

« Programs should use atomic operations carefully since they “busy wait”

HANDLE
WITH CARE

See en.wikipedia.org/wiki/Busy waiting



http://en.wikipedia.org/wiki/Busy_waiting

Usage Considerations for Java Atomic Operations

« Programs should use atomic operations carefully since they “busy wait”

+ Busy waiting needlessly wastes i s i s
CPU cycles if contention is high iskas = Tt gt Ak = PN

See www.ibm.com/support/knowledgecenter/en/SS3KLZ/
com.ibm.java.diagnostics.healthcenter.doc/topics/resolving.html



http://www.ibm.com/support/knowledgecenter/en/SS3KLZ/com.ibm.java.diagnostics.healthcenter.doc/topics/resolving.html

Usage Considerations for Java Atomic Operations

« Programs should use atomic operations carefully since they “busy wait”

« However, some “spinning” is
useful in multi-core processors

%{p EMERGING TECHNOLOGIES

"Engineering Concurrent Library Components”

Doug Lea

Day 2 - April 3, 2013 - 1:30 PM - Salon C

phillyemergingtech.com

See www.youtube.com/watch?v=sg0MX3fHkro



http://www.youtube.com/watch?v=sq0MX3fHkro

Usage Considerations for Java Atomic Operations

* Programs should use atomic operations carefully since they “busy wait”

% EMERGING TECHNOLOGIES

« However, some “spinning” is
useful in multi-core processors
. e.g., due to context switching | "Engineering Concurrent Library Components”
overhead of sleep locks

Doug Lea

Day 2 - April 3, 2013 - 1:30 PM - Salon C

phillyemergingtech.com

See www.youtube.com/watch?v=sg0MX3fHkro



http://www.youtube.com/watch?v=sq0MX3fHkro

Usage Considerations for Java Atomic Operations

« The compareAndSet*() methods in the various Java Atomic* classes provide
a portable means of accessing low-level CAS operations

compareAndSet

public final boolean compareAndSet(boolean expect,
boolean update)

Atomically sets the value to the given updated value if the current value
== the expected value.

Parameters:

expect - the expected value

update - the new value

Returns:

true 1f successful. False return indicates that the actual
value was not equal to the expected value.

See docs.orade.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicBoolean.html#compareAndSet



https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicBoolean.html#compareAndSet-boolean-boolean-

Usage Considerations for Java Atomic Operations

« The compareAndSet*() methods in the various Java Atomic* classes provide
a portable means of accessing low-level CAS operations

« Keep in mind that these methods are intended for very specific use cases

class Random ... {
public Random ()
{ this(seedUniquifier() * System.nanoTime()); }

private static long seedUniquifier () {
for (;;) {
long s = seedUniquifier.get();
long next = s * 181783497276652981L;
if (seedUniquifier.compareAndSet (s, next))

return next; ‘\\\

Try to set the computed next seed atomically, which
will succeed only If s is still the current seed value

}
}

private static final Atomiclong seedUniquifier =
new AtomicLong (8682522807148012L) ;

compareAndSet() is only called once per loop, per thread & only succeeds in one thread




End of Atomic Classes &
Operations: Usage
Considerations

10



