Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderhilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

I will adopt Best Prachices
I will adopt Best Practices
I will adogt Best Fractices
I wiell adopt Best Fractices
I will adogt Best Bractices
1 will adopt Best Brachices
I will adopt Best Practices

I will adopt Best Bractices
I will adopt Best Practices
I will adogt Best Bractices
I will adopt Best Crachices

« Appreciate usage considerations
for Java volatile variables

Usage Considerations
for Volatile Variables

Usage Considerations for Volatile Variables

« Concurrent apps should use volatile variables carefully to avoid “busy waiting”

class LoopMayNeverEnd {
volatile boolean mDone = false;

void work () {
// Thread T2 read
while (!'mDone) {

// do work‘\\\

If "do work” isn’t time consuming
this loop will spin excessively..

}
}

void stopWork () {
// Thread Tl write
mDone = true;

}

See en.wikipedia.org/wiki/Busy waiting

http://en.wikipedia.org/wiki/Busy_waiting

Usage Considerations for Volatile Variables

« Concurrent apps should use volatile variables carefully to avoid “busy waiting”
 Busy waiting is most effective public class AtomicLong

when encapsulated in higher-
evel concurrency libraries

>\(// EMERGING TECHNOLOGIES

"Engineering Concurrent Library Components”

Doug Lea

Day 2 - April 3, 2013 - 1:30 PM - Salon C

phillyemergingtech.com

{

private volatile long value;

private static final Unsafe unsafe
= Unsafe.getUnsafe() ;

private static final long
valueOffset;

static {

valueOffset = unsafe.
objectFieldOffset
(AtomicLong
.class
.getDeclaredField("value")) ;

See www.youtube.com/watch?v=sq0MX3fHkro

http://www.youtube.com/watch?v=sq0MX3fHkro

Usage Considerations for Volatile Variables

« Complex operations that volatile int counter = 0;
perform multiple instructions
can’t use volatile by itself // In Thread tl
counter++;

// load counter into register rl
// increment register rl
// store register rl into counter

// In Thread t2

counter++;

// load counter into register rl
// increment register rl

// store register rl into counter

Usage Considerations for Volatile Variables

« Complex operations that volatile int counter = 0;
perform multiple instructions
can't use volatile by itself, e.qg. // In Thread tl
counter++;

« Incrementing an integer

Usage Considerations for Volatile Variables

« Complex operations that volatile int counter = 0;
perform multiple instructions
can’t use volatile by itself, e.g. // In Thread tl
counter++;

» Incrementing an integer // load counter into register rl

Usage Considerations for Volatile Variables

« Complex operations that volatile int counter = 0;
perform multiple instructions
can’t use volatile by itself, e.g. // In Thread tl

i : counter++;
« Incrementing an integer

// increment register rl

Usage Considerations for Volatile Variables

« Complex operations that volatile int counter = 0;
perform multiple instructions
can’t use volatile by itself, e.g. // In Thread tl
counter++;

« Incrementing an integer

// store register rl into counter

10

Usage Considerations for Volatile Variables

« Complex operations that volatile int counter = 0;
perform multiple instructions
can’t use volatile by itself, e.g. // In Thread tl

counter++;

// load counter into register rl
// increment register rl

// store register rl into counter

« Incrementing an integer

// In Thread t2

counter++;

// load counter into register rl
// increment register rl

// store register rl into counter

11

Usage Considerations for Volatile Variables

« Complex operations that
perform multiple instructions
can’t use volatile by itself, e.g.

« Incrementing an integer

time

Thread, Thread, Long
value

initialized 0

read value readvalue — 0

Increase Increase 0

valueby 1 valueby 1

write back / write back — ;?or

If these steps interleave in multiple
threads the results may be inconsistent

See en.wikipedia.org/wiki/Write-write conflict

https://en.wikipedia.org/wiki/Write%E2%80%93write_conflict

Usage Considerations for Volatile Variables

« Complex operations that AtomicLong mCounter =
perform multiple instructions new AtomicLong (0) ;

can’t use volatile by itself, e.qg.
// In Thread tl

mCounter.getAndIncrement () ;
» Use an atomic variable // load counter into register rl
instead of a volatile variable // increment register rl
// store register rl into counter

// In Thread t2
mCounter.getAndIncrement () ;

// load counter into register rl
// increment register rl

// store register rl into counter

See docs.oracle.com/javase/tutorial/essential/concurrency/atomicvars.html

http://docs.oracle.com/javase/tutorial/essential/concurrency/atomicvars.html

Usage Considerations for Volatile Variables

« Declaring an array or an object
as volatile only makes the
reference volatile

public class Vector<E> ... {
/**

* The number of elements or
* the size of the wvector.

*/

protected int elementCount;

/**
* The elements of the wvector.
*/

protected Object[] elementData;

}

volatile Vector v = new Vector (),

14

Usage Considerations for Volatile Variables

« Declaring an array or an object public class Vector<E> ... {
as volatile only makes the [**
reference volatile * The number of elements or
* the size of the vector.
*/

protected int elementCount;

/**

* The elements of the vector.
*/
protected Object[] elementData;

}

volatile Vector v = new Vector (),

See docs.oracle.com/javase/8/docs/api/java/util/Vector.html

https://docs.oracle.com/javase/8/docs/api/java/util/Vector.html

Usage Considerations for Volatile Variables

« Declaring an array or an object public class Vector<E> ... {
as volatile only makes the [**
reference volatile * The number of elements or
* the size of the vector.
*/
protected int elementCount;
/**
* The elements of the vector.
*/

protected Object[] elementData;

}

volatile Vector v = new Vector()

Volatile variable

16

Usage Considerations for Volatile Variables

« Declaring an array or an object
as volatile only makes the
reference volatile

« However, the contents
pointed to by the reference
are not volatile

public class Vector<E> ... {
/**
* The number of elements or
* the size of the wvector.
*/

protected int elementCount;

/**
* The eleménts of the wvector.
*/

protected Object[] elementData;

volatile Vect v = new Vector()

Non-volatile fields

17

Usage Considerations for Volatile Variables

« Declaring an array or an object public class Vector<E> ... {
as volatile only makes the .
reference volatile public synchronized E set

(int location, E object) {
if (location < elementCount) {
E result = (E)
elementData[location];

 Therefore, more powerful elementData[location] =
types of synchronization are object;
needed return result;

}

volatile Vector v = new Vector (),

See upcoming lessons on “Java Monitor Object” & “Java Synchronizers”

Usage Considerations for Volatile Variables

« Java semantics of volatile aren’t
the same as in C or C++

In C and C++ [edi

In C, and consequently C++, the volatile keyword was intended tol']

« allow access to memory mapped devices
e allow uses of variables between setjmp and longjmp
e allow uses of sig atomic_t variables in signal handlers.

Operations on volatile variables are not atomic, nor do they establish a
proper happens-before relationship for threading. This is according to the
relevant standards (C, C++, POSIX, WIN32),?! and this is the matter of fact for
the vast majority of current implementations. Thus, the usage of volatile
keyword as a portable synchronization mechanism is discouraged by many
C/C++ groups.PIMIE]

Example of memory-mapped /O in C [edif]
In this example, the code sets the value stored in foo to @ . Itthen starts to
poll that value repeatedly until it changes to 255 :

static int foo;

void bar(void) {
foo = @;

(foo = 255)

.
»

An optimizing compiler will notice that no other code can possibly change the
value stored in foo , and will assume that it will remain equal to e at all times.
The compiler will therefore replace the function body with an infinite loop similar

See www.drdobbs.com/parallel/volatile-vs-volatile/212701484

http://www.drdobbs.com/parallel/volatile-vs-volatile/212701484

Usage Considerations for Volatile Variables

« Java semantics of volatile aren’t
the same as in C or C++

« Volatiles in C/C++ aren't
atomic & don't create a
happens-before relationship

In C and C++ [edi

In C, and consequently C++, the volatile keyword was intended tol']

« allow access to memory mapped devices
e allow uses of variables between setjmp and longjmp
e allow uses of sig atomic_t variables in signal handlers.

Operations on volatile variables are not atomic, nor do they establish a
proper happens-before relationship for threading. This is according to the
relevant standards (C, C++, POSIX, WIN32),?! and this is the matter of fact for
the vast majority of current implementations. Thus, the usage of volatile
keyword as a portable synchronization mechanism is discouraged by many
C/C++ groups.PIMIE]

Example of memory-mapped /O in C [edif]
In this example, the code sets the value stored in foo to @ . Itthen starts to
poll that value repeatedly until it changes to 255 :

static int foo;

void bar(void) {
foo = @;

(foo = 255)

.
3

An optimizing compiler will notice that no other code can possibly change the
value stored in foo , and will assume that it will remain equal to e at all times.
The compiler will therefore replace the function body with an infinite loop similar

See en.wikipedia.org/wiki/Volatile variable#In C and C++

http://en.wikipedia.org/wiki/Volatile_variable#In_C_and_C++

Usage Considerations for Volatile Variables

« Java semantics of volatile aren’t
the same as in C or C++

« They largely just disable
compiler optimizations

NATIONAL DAY OF
UNPLUGGING

In C and C++ [edi
In C, and consequently C++, the volatile keyword was intended tol']

« allow access to memory mapped devices
e allow uses of variables between setjmp and longjmp
e allow uses of sig atomic_t variables in signal handlers.

Operations on volatile variables are not atomic, nor do they establish a
proper happens-before relationship for threading. This is according to the
relevant standards (C, C++, POSIX, WIN32),?! and this is the matter of fact for
the vast majority of current implementations. Thus, the usage of volatile
keyword as a portable synchronization mechanism is discouraged by many
C/C++ groups.[PIMIE]

Example of memory-mapped /O in C [edif]
In this example, the code sets the value stored in foo to @ . Itthen starts to
poll that value repeatedly until it changes to 255 :

static int foo;

void bar(void) {
foo = @;

thile (foo != 255)

.
El

An optimizing compiler will notice that no other code can possibly change the
value stored in foo , and will assume that it will remain equal to e at all times.
The compiler will therefore replace the function body with an infinite loop similar

21

End of Java Volatile Variables:
Usage Considerations

22

