Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderhilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

« Understand how Java volatile variables

Learning Objectives in this Part of the Lesson

provide concurrent programs with thread- §
safe mechanisms to read from & write to "
single variables

Overview of Java
Volatile Variables

Overview of Java Volatile Variables

« When a concurrent program is not
written correctly, the errors tend to
fall into three categories: atomicity,
visibility, or ordering

See earlier lesson on “Overview of Atomic Operations”

Overview of Java VoIatlle Variables

« Volatile ensures that changes to a
variable are always consistent &
visible to other threads atomically

See tutorials.jenkov.com/java-concurrency/volatile.html

http://tutorials.jenkov.com/java-concurrency/volatile.html

Overview of Java Volatile Variables

« Volatile ensures that changes to a
variable are always consistent &
visible to other threads atomically

» Reads & writes go directly to main
memory (not registers/cache) to
avoid read/write confiicts on Java
fields storing shared mutable data

Overview of Java Volatile Variables

« Volatile ensures that changes to a
variable are always consistent &
visible to other threads atomically

 Volatile reads/writes cannot be
reordered

Overview of Java Volatile Variables

« Volatile ensures that changes to a
variable are always consistent &
visible to other threads atomically

 Volatile reads/writes cannot be
reordered

« The Java compiler automatically
transforms reads & writes on a
volatile variable into atomic
acquire & release pairs

Overview of Java Volatlle Varlables

 Volatile is not needed in sequential
programs for several reasons

Overview of Java Volatile Variables

« Volatile is not needed in sequential
programs for several reasons, e.g.

« Reads & writes of (most) Java
primitive variables are atomic
nv Y

a

I write nv=42
read nv=42

Main
Thread g

Main Memory

If the main thread writes a value to a non-volatile
(nv) field the next read of that field will get that value

10

Overview of Java Volatile Variables

« Volatile is not needed in sequential
programs for several reasons, e.g.

 Although multiple-step operations are

performed at the machine code level

for variables of types long & double,
these operations aren't interleaved

in a single-threaded program |

See docs.oracle.com/javase/specs/ils/se7/html/jls-17.html#jls-17.7

http://docs.oracle.com/javase/specs/jls/se7/html/jls-17.html#jls-17.7

Overview of Java Volatile Variables

« Volatile /s needed in concurrent
Java programs

Volatile variable

In computer programming, particularly in the C, C++, C#, and
Java programming languages, a variable or object declared with
the volatile keyword usually has special properties related to
optimization and/or threading. Generally speaking, the volatile
keyword is intended to prevent the compiler from applying
certain optimizations which it might have otherwise applied
because ordinarily it is assumed variables cannot change value

"on their own."”

The actual definition and applicability of the volatile keyword is
often misconstrued in the context of the C language. Although
C++, C#, and Java share the same keyword volatile from C,
there is a great deal of difference between the semantics and
usefulness of volatile in each of these programming languages.

See en.wikipedia.org/wiki/Volatile variable

http://en.wikipedia.org/wiki/Volatile_variable

Overview of Java Volatile Variables

« Volatile /s needed in concurrent
Java programs

* One thread may not see the latest

value of a variable changed by
another thread due to caching

Main Memory

Cache 1l

Thread,

%

Thread,

X

Cachen

Thread,

X

13

Overview of Java Volatile Variables

« Volatile /s needed in concurrent
Java programs

* One thread may not see the latest
value of a variable changed by

Main Memory

nv AV

another thread due to caching

Thread,

%

Thread,

5

Thread, writes a value to a non-volatile field nv,
which is cached locally in the core for efficiency

Cachen

Thread,

-5

14

Overview of Java Volatile Variables

« Volatile /s needed in concurrent
Java programs

* One thread may not see the latest
value of a variable changed by

Main Memory

nv AV

another thread due to caching

Thread,

%

Thread,

5

Cachen

Thread,

-5

When Thread, subsequently reads the value of
field nv it gets a different result due to caching

15

Overview of Java Volatile Variables

» Java defines the volatile keyword | In Java ean
tO address these prOblemS The Java programming language also has the volatile

keyword, but it is used for a somewhat different purpose. When
applied to a field, the Java qualifier volatile guarantees

that:

» In all versions of Java, there is a global ordering on the reads
and writes to a volatile variable. This implies that every
thread accessing a volatile field will read its current value
before continuing, instead of (potentially) using a cached
value. (However, there is no guarantee about the relative
ordering of volatile reads and writes with regular reads and
writes, meaning that it's generally not a useful threading
construct.)

¢ In Java 5 or later, volatile reads and writes establish a
happens-before relationship, much like acquiring and
releasing a mutex !

Using velatile may be faster than a lock, but it will not work
in some situations %197 7%€€%d Tha range of situations in which

volatile is effective was expanded in Java 5; in particular,
[10]

double-checked locking now works correctly.

See en.wikipedia.org/wiki/Volatile variable#In Java

http://en.wikipedia.org/wiki/Volatile_variable#In_Java

Overview of Java Volatile Variables

« Java defines the volatile keyword

to address these problems

* A value written to a volatile
variable will a/ways be stored
in main memory

Main Memory

Cache 1l

nv \'

Thread,

%

Thread,

5

Cachen

Thread,

-5

17

Overview of Java Volatile Variables

« Java defines the volatile keyword
to address these problems

A value written to a volatile
variable will a/ways be stored

Main Memory

in main memory

« A volatile write “happens- Cache 1
before” all following reads
of the same variable -

Thread,

%

Thread,

5

Cachen

Thread,

-5

See en.wikipedia.org/wiki/Happened-before

https://en.wikipedia.org/wiki/Happened-before

Overview of Java Volatile Variables

« Java defines the volatile keyword
to address these problems

Main Memory

nv \'

« An access to a volatile variable Cache 1 Cache 2 Cache n

will be read from main memory
nv v nv v I b

Thread,

%

Thread,

5

Thread,

-5

volatile reads are cheap & volatile writes are cheaper than synchronized statements

Overview of Java Volatile Variables

« Volatile guarantees atomicity ,volatile long foo;

final long A = Oxffffffffffffffffl;
final long B = 0;

new Thread(() -> {
for (int 1i;; i++) {
foo=1%2=07?A: B;
}}) .start();

new Thread(() -> {

long fooRead = foo;

if (fooRead !'= A && fooRead '= B)
— System.err.println
("foo incomplete write "

+ Long.toHexString (fooRead)) ;
}) .start () ;

If volatile is removed here then
Incomplete writes may occur
(especially on 32 bit machines)

See stackoverflow.com/questions/3038203/
is-there-any-point-in-using-a-volatile-long

http://stackoverflow.com/questions/3038203/is-there-any-point-in-using-a-volatile-long

Overview of Java Volatile Variables

- Volatile guarantees atomicity Atomic Access
° Reads & Wr|tes are atom/C for In programming, an atomic action is one that effectively happens all at
. . once. An atomic action cannot stop in the middle: it either happens
a” Varlables dedared VOIatIIe completely, or it doesn't happen at all. No side effects of an atomic action

are visible until the action is complete.

We have already seen that an increment expression, such as c++, does
not describe an atomic action. Even very simple expressions can define
complex actions that can decompose into other actions. However, there
are actions you can specify that are atomic:

» Reads and writes are atomic for reference variables and for most

including 1ong and double variables).
Atomic actions cannot be interleaved, so they can be used without fear of
thread interference. However, this does not eliminate all need to
synchronize atomic actions, because memory consistency errors are still
possible. Using volatile variables reduces the risk of memory
consistency errors, because any write to a volatile variable
establishes a happens-before relationship with subsequent reads of that
same variable. This means that changes to a volatile variable are
always visible to other threads. What's more, it also means that when a
thread reads a volatile variable, it sees not just the latest change to
the volatile, but also the side effects of the code that led up the
change.

See docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html

http://docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html

Overview of Java Volatile Variables

« Volatile guarantees atomicity

» Reads & writes are always
atomic for Java references

Atomic Access

In programming, an atomic action is one that effectively happens all at
once. An atomic action cannot stop in the middle: it either happens
completely, or it doesn't happen at all. No side effects of an atomic action
are visible until the action is complete.

We have already seen that an increment expression, such as c++, does
not describe an atomic action. Even very simple expressions can define
complex actions that can decompose into other actions. However, there
are actions you can specify that are atomic:

primitive varnables (all types except 1ong and doukble).
* Reads and writes are atomic for all variables declared volatile
{including long and double variables).

Atomic actions cannot be interleaved, so they can be used without fear of
thread interference. However, this does not eliminate all need to
synchronize atomic actions, because memory consistency errors are still
possible. Using volatile variables reduces the risk of memory
consistency errors, because any write to a volatile variable
establishes a happens-before relationship with subsequent reads of that
same variable. This means that changes to a volatile variable are
always visible to other threads. What's more, it also means that when a
thread reads a volatile variable, it sees not just the latest change to
the volatile, but also the side effects of the code that led up the
change.

See docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html

http://docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html

Overview of Java Volatile Variables

- Volatile guarantees visibility public class MyRunnable
implements Runnable {

private volatile boolean
mIsStopped = false;

public void stopMe() ({
mIsStopped = true;

}

public void run() {
while (mIsStopped != true) {
// a long-running operation

}

See jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html

http://jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html

Overview of Java Volatile Variables

- Volatile guarantees visibility public class MyRunnable

o . ' R 1
. If an action in thread T1 is . implements Runnable {
. . private volatile boolean
visible to thread T2, the result mIsStopped = false:
of that action can be observed

by thread T2 public void stopMe() {
mIsStopped = true; // Tl write

}

public/ void run() { // T2 read
while (mIsStopped != true) {
// a long-running operation

}

volatile write is visible to
“happens-after” reads

24

Overview of Java Volatile Variables

- Volatile guarantees ordering public class MyRunnable
implements Runnable {

private volatile boolean
mIsStopped = false;

public void stopMe() ({
mIsStopped = true;

}

public void run() {
while (mIsStopped != true) {
// a long-running operation

}

See jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html

http://jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html

Overview of Java Volatile Variables

- Volatile guarantees ordering public class MyRunnable

. . : impl R 1
- Ordering constraints describe . implements Runnable f{
. private volatile boolean
what order operations are seen mIsStopped = false;
to occur in different threads

public void stopMe () {
mIsStopped = true; // Tl write

}

public void run() { // T2 read
while (mIsStopped != true) {
// a long-running\operation

}

The write to mIsStopped in T1 must happen-before the T2 read completes

26

Overview of Java Volatile Variables

» Incrementing a volatile is not atomic

Thread, Thread, volatile
value

initialized 0

read value — 0

read value «— 0

inCrease

value by 2 :

inCrease

value by 1 :

write back write back — 2or 1?

27

Overview of Java Volatile Variables

» Incrementing a volatile is not atomic

. If multiple threads try to increment ~ 'Nfead; Thread,
a volatile at the same time, an initialized 0
update might get lost

volatile
value

read value — 0
read value «— 0

iInCrease

value by 2 :

inCrease

value by 1 :

write back write back — 2or 1?

Consider using the java.util.concurrent.atomic package, which supports
atomic increment/decrement & compare-and-swap (CAS) operations

End of Volatile Variables:
Introduction

29

