
Java Volatile Variables:

Introduction

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software 

Integrated Systems 

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Understand how Java volatile variables 

provide concurrent programs with thread-
safe mechanisms to read from & write to 
single variables 



3

Overview of Java 
Volatile Variables



4

Overview of Java Volatile Variables
• When a concurrent program is not 

written correctly, the errors tend to 
fall into three categories: atomicity, 
visibility, or ordering

See earlier lesson on “Overview of Atomic Operations”



5

Overview of Java Volatile Variables
• Volatile ensures that changes to a 

variable are always consistent & 
visible to other threads atomically

See tutorials.jenkov.com/java-concurrency/volatile.html

http://tutorials.jenkov.com/java-concurrency/volatile.html


6

Overview of Java Volatile Variables
• Volatile ensures that changes to a 

variable are always consistent & 
visible to other threads atomically

• Reads & writes go directly to main 
memory (not registers/cache) to 
avoid read/write conflicts on Java 
fields storing shared mutable data



7

Overview of Java Volatile Variables
• Volatile ensures that changes to a 

variable are always consistent & 
visible to other threads atomically

• Reads & writes go directly to main 
memory (not registers/cache) to 
avoid read/write conflicts on Java 
fields storing shared mutable data

• Volatile reads/writes cannot be 
reordered



8

Overview of Java Volatile Variables
• Volatile ensures that changes to a 

variable are always consistent & 
visible to other threads atomically

• Reads & writes go directly to main 
memory (not registers/cache) to 
avoid read/write conflicts on Java 
fields storing shared mutable data

• Volatile reads/writes cannot be 
reordered

• The Java compiler automatically 
transforms reads & writes on a 
volatile variable into atomic 
acquire & release pairs



9

Overview of Java Volatile Variables
• Volatile is not needed in sequential 

programs for several reasons



10

Overview of Java Volatile Variables
• Volatile is not needed in sequential 

programs for several reasons, e.g.

• Reads & writes of (most) Java 
primitive variables are atomic

Main Memory

42 13

nv v

write nv=42

…

read nv=42

Main

Thread

If the main thread writes a value to a non-volatile 
(nv) field the next read of that field will get that value



11

Overview of Java Volatile Variables
• Volatile is not needed in sequential 

programs for several reasons, e.g.

• Reads & writes of (most) Java 
primitive variables are atomic

• Although multiple-step operations are 
performed at the machine code level 
for variables of types long & double, 
these operations aren’t interleaved 
in a single-threaded program

See docs.oracle.com/javase/specs/jls/se7/html/jls-17.html#jls-17.7

http://docs.oracle.com/javase/specs/jls/se7/html/jls-17.html#jls-17.7


12

Overview of Java Volatile Variables
• Volatile is needed in concurrent 

Java programs

See en.wikipedia.org/wiki/Volatile_variable

http://en.wikipedia.org/wiki/Volatile_variable


13

Overview of Java Volatile Variables
• Volatile is needed in concurrent 

Java programs

• One thread may not see the latest 
value of a variable changed by 
another thread due to caching

Main Memory

42 13

nv v

Cache 1

42 13

nv v

Cache 2

42 13

nv v

Cache n

42 13

nv v

ThreadnThread1 Thread2



14

Overview of Java Volatile Variables
• Volatile is needed in concurrent 

Java programs

• One thread may not see the latest 
value of a variable changed by 
another thread due to caching

Main Memory

42 13

nv v

Cache 1

7 13

nv v

Cache 2

42 13

nv v

Cache n

42 13

nv v

ThreadnThread1 Thread2

write 

nv = 7

Thread1 writes a value to a non-volatile field nv, 

which is cached locally in the core for efficiency



15

Overview of Java Volatile Variables
• Volatile is needed in concurrent 

Java programs

• One thread may not see the latest 
value of a variable changed by 
another thread due to caching

Main Memory

42 13

nv v

Cache 1

7 13

nv v

Cache 2

42 13

nv v

Cache n

42 13

nv v

ThreadnThread1 Thread2

write 

nv = 7

read

nv = 42

When Thread2 subsequently reads the value of 
field nv it gets a different result due to caching



16

Overview of Java Volatile Variables
• Java defines the volatile keyword 

to address these problems

See en.wikipedia.org/wiki/Volatile_variable#In_Java

http://en.wikipedia.org/wiki/Volatile_variable#In_Java


17

Overview of Java Volatile Variables
• Java defines the volatile keyword 

to address these problems

• A value written to a volatile 
variable will always be stored 
in main memory 

Main Memory

7 7

nv v

Cache 1

7 7

nv v

Cache 2

42 13

nv v

Cache n

42 13

nv v

ThreadnThread1 Thread2

write 

v = 7



18

Overview of Java Volatile Variables
• Java defines the volatile keyword 

to address these problems

• A value written to a volatile 
variable will always be stored 
in main memory 

• A volatile write “happens-
before” all following reads 
of the same variable

Main Memory

7 7

nv v

Cache 1

7 7

nv v

Cache 2

42 13

nv v

Cache n

42 13

nv v

ThreadnThread1 Thread2

write 

v = 7

See en.wikipedia.org/wiki/Happened-before

https://en.wikipedia.org/wiki/Happened-before


19

Overview of Java Volatile Variables
• Java defines the volatile keyword 

to address these problems

• A value written to a volatile 
variable will always be stored 
in main memory 

• An access to a volatile variable 
will be read from main memory

Main Memory

7 7

nv v

Cache 1

7 7

nv v

Cache 2

7 7

nv v

Cache n

42 13

nv v

ThreadnThread1 Thread2

read

v = 7

volatile reads are cheap & volatile writes are cheaper than synchronized statements



20

Overview of Java Volatile Variables
• Volatile guarantees atomicity

See stackoverflow.com/questions/3038203/
is-there-any-point-in-using-a-volatile-long

volatile long foo;

final long A = 0xffffffffffffffffl;

final long B = 0;

new Thread(() -> {

for (int i;; i++) {

foo = i % 2 == 0 ? A : B;

}}).start();

new Thread(() -> {

long fooRead = foo;

if (fooRead != A && fooRead != B)

System.err.println

("foo incomplete write "

+ Long.toHexString(fooRead));

}).start();

If volatile is removed here then 
incomplete writes may occur 

(especially on 32 bit machines)

http://stackoverflow.com/questions/3038203/is-there-any-point-in-using-a-volatile-long


21

Overview of Java Volatile Variables
• Volatile guarantees atomicity

• Reads & writes are atomic for 
all variables declared volatile

See docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html

http://docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html


22

Overview of Java Volatile Variables
• Volatile guarantees atomicity

• Reads & writes are atomic for 
all variables declared volatile

• Reads & writes are always
atomic for Java references

See docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html

http://docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html


23

Overview of Java Volatile Variables
• Volatile guarantees visibility

See jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html

public class MyRunnable

implements Runnable {

private volatile boolean

mIsStopped = false;

public void stopMe() { 

mIsStopped = true; 

} 

public void run() {

while (mIsStopped != true) { 

// a long-running operation

}

...

http://jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html


24

volatile write is visible to 
“happens-after” reads

Overview of Java Volatile Variables
• Volatile guarantees visibility

• If an action in thread T1 is
visible to thread T2, the result 
of that action can be observed 
by thread T2

public class MyRunnable

implements Runnable {

private volatile boolean

mIsStopped = false;

public void stopMe() { 

mIsStopped = true; // T1 write

} 

public void run() { // T2 read

while (mIsStopped != true) { 

// a long-running operation

}

...



25

Overview of Java Volatile Variables
• Volatile guarantees ordering public class MyRunnable

implements Runnable {

private volatile boolean

mIsStopped = false;

public void stopMe() { 

mIsStopped = true; 

} 

public void run() {

while (mIsStopped != true) { 

// a long-running operation

}

...

See jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html

http://jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html


26

Overview of Java Volatile Variables
• Volatile guarantees ordering

• Ordering constraints describe 
what order operations are seen 
to occur in different threads

public class MyRunnable

implements Runnable {

private volatile boolean

mIsStopped = false;

public void stopMe() { 

mIsStopped = true; // T1 write

} 

public void run() { // T2 read

while (mIsStopped != true) { 

// a long-running operation

}

...

The write to mIsStopped in T1 must happen-before the T2 read completes



27

Overview of Java Volatile Variables
• Incrementing a volatile is not atomic

Thread1 Thread2

volatile 
value

initialized 0

read value ← 0

read value ← 0

increase 
value by 2

0

increase 
value by 1

0

write back write back → 2 or 1?



28

Overview of Java Volatile Variables
• Incrementing a volatile is not atomic

• If multiple threads try to increment 
a volatile at the same time, an 
update might get lost

Thread1 Thread2

volatile 
value

initialized 0

read value ← 0

read value ← 0

increase 
value by 2

0

increase 
value by 1

0

write back write back → 2 or 1?

Consider using the java.util.concurrent.atomic package, which supports 
atomic increment/decrement & compare-and-swap (CAS) operations



29

End of Volatile Variables: 
Introduction


