Overview of Java Atomic
Operations & Variahles

Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderhilt University
Nashville, Tennessee, USA



mailto:d.schmidt@vanderbilt.edu

Learning Objectives in th|s Lesson

« Recognize Java programming language =7
& library features that provide atomic
operations & variables




Overview of Java Atomic
Operations & Variables




Overview of Java Atomic Operations & Variables

« Java supports several types
of atomicity




Overview of Java Atomic Operations & Variables

« Java supports several types
of atomicity, e.g.

« Volatile variables

Main Memory

See upcoming lesson on “Java Volatile Variables”




Overview of Java Atomic Operations & Variables

« Java supports several types
of atomicity, e.g.

« Volatile variables

« Ensure a variable is read
from & written to main
memory & not cached

Main Memory

See en.wikipedia.org/wiki/Volatile variable#In Java



http://en.wikipedia.org/wiki/Volatile_variable#In_Java

Overview of Java Atomic Operations & Variables

 Java supports several types class PingPongTest ({
of atomicity, e.g. private volatile int wval = 0;

private int MAX = ...;

« Volatile variables

» Ensure a variable is read public void playPingPong() {
from & written to main new Thread(() -> { // T2 Listener.

memory & not cached for (int 1lv = val; lv < MAX; )

_ _ if (1v !'= val) {
* e.g., sharing a field print ("pong (" + val + ")");

between two threads 1v = val:
}}) .start();

new Thread(() -> { // Tl Changer.
for (int 1lv = val; val < MAX; ) {
val = ++1v;
print ("ping(" + 1lv + ")"));
... Thread.sleep(500) ;
}}) .start();




Overview of Java Atomic Operations & Variables

 Java supports several types class PingPongTest ({
of atomicity, e.g. private volatile int wval = 0;
private int MAX = ...;

« Volatile variables

» Ensure a variable is read public void playPingPong() {
from & written to main new Thread(() -> { // T2 Listener.
memory & not Cached for (int 1lv = wval; lv < MAX; )

_ _ if (lv '= val) {
 e.g., sharing a field print ("pong (" + val + ")");
between two threads 1v = val:
}}) .start();
new Thread(() -> { // Tl Changer.
Q / for (int 1lv = wval; val < MAX; ) {
0y val = ++1lv;
/ print("ping(" + 1lv + ")"));

) . Th .sl ;
This program alternates read.sleep(500)

between threads T, & T,

See dzone.com/articles/java-volatile-keyword-0



https://dzone.com/articles/java-volatile-keyword-0

Overview of Java Atomic Operations & Variables

 Java supports several types class PingPongTest ({
of atomicity, e.g. private volatile int wval = 0;

private/int MAX = ...;

« Volatile variables

» Ensure a variable is read c void playPingPong() {
from & written to main ew Thread(() -> { // T2 Listener.
memory & not cached for (int 1lv = val; lv < MAX; )

if (lv !'= val
* e.g., sharing a field 1 val) {

print ("pong (" + wval + ")");
between two threads 1v = val:

}}) .start() ;

If volatile’s omitted from val’s new Thread(() -> { // Tl Changer.

aefinition the program wont for (int 1lv = val; val < MAX; )
terminate since val’s not visible val = ++1v:

print ("ping(" + 1lv + ")"));
... Thread.sleep(500) ;
}}) .start();

{

By defining val as volatile reads & writes bypass local caches




Overview of Java Atomic Operations & Variables

 Java supports several types class PingPongTest ({
of atomicity, e.g. private volatile int wval = 0;

private int MAX = ...;

« Volatile variables

» Ensure a variable is read public void playPingPong() {
from & written to main new Thread(() -> { // T2 Listener.

memory & not cached for (int 1lv = val; lv < MAX; )

_ _ if (1v !'= val) \{
* e.g., sharing a field print ("pong ("\ + val + ")");

between two threads v = val:

}}) .start () ;\ These reads from
val are atomic

new Thread(() -> { // Tl Changer.
for (int 1lv = val; val < MAX; ) {
val = ++1v;
print ("ping(" + 1lv + ")"));
... Thread.sleep(500) ;
}}) .start();

10



Overview of Java Atomic Operations & Variables

 Java supports several types class PingPongTest ({
of atomicity, e.g. private volatile int wval = 0;

private int MAX = ...;

« Volatile variables

» Ensure a variable is read public void playPingPong() {
from & written to main new Thread(() -> { // T2 Listener.

memory & not cached for (int 1lv = val; lv < MAX; )

_ _ if (1v !'= val) {
* e.g., sharing a field print ("pong (" + val + ")");

between two threads 1v = val:
}}) .start();

new Thread(() -> { // Tl Changer.
for (int 1lv = wval; val < MAX; ) {

val = ++1v;
,,////,,//”’Print("ping(" + 1v+ ")"));

This write to val is atomic - Thread.sleep(500);
}}) .start();

11



Overview of Java Atomic Operations & Variables

« Java supports several types
of atomicity, e.g.

» Low-level atomic operations
in the Java Unsafe class

Concurrency

And few words about concurrency with Unsafe. compareAndSwap methods
are atomic and can be used to implement high-performance lock-free data

structures.

For example, consider the problem to increment value in the shared object

using lot of threads.

First we define simple interface Counter:

interface Counter {
vold increment();
long getCounter();

}

Then we define worker thread Counterclient, that uses Counter:

class CounterClient implements Runnable {
private Counter c;

private int num;

public CounterClient(Counter c, int num) {

this.c = ¢;
this.num = num;
}
@override

public void run() {
for (int i = @; 1 < num; i++) {
c.increment();

}

See upcoming lesson on “Java Atomic Operations & Classes”




Overview of Java Atomic Operations & Variables

« Java supports several types
of atomicity, e.g.

» Low-level atomic operations
in the Java Unsafe class

« It's designed for use only by
the Java Class Library, not by
normal app programs

Concurrency

And few words about concurrency with Unsafe. compareAndSwap methods
are atomic and can be used to implement high-performance lock-free data

structures.

For example, consider the problem to increment value in the shared object

using lot of threads.

First we define simple interface Counter:

interface Counter {
vold increment();
long getCounter();

}

Then we define worker thread Counterclient, that uses Counter:

class CounterClient implements Runnable {
private Counter c;

private int num;
public CounterClient(Counter c, int num) {

this.c = ¢;
this.num = num

for (int i = @; 1 < num; i++) {
C.

See www.baeldung.com/java-unsafe



http://www.baeldung.com/java-unsafe

Overview of Java Atomic Operations & Variables

- Java supports several types int compareAndSwapInt

of atomicity, e.g. (Object o, long offset,
int expected, int updated) {

START ATOMIC () ;
 Low-level atomic operations int *base = (int *) o;

/n the Java Unsafe class int oldValue = base[offset];
if (oldvValue == expected)

base[offset] = updated;
END ATOMIC () ;
return oldValue;

}

* Its “compare & swap” (CAS)
methods are quite useful

See en.wikipedia.org/wiki/Compare-and-swap



https://en.wikipedia.org/wiki/Compare-and-swap

Overview of Java Atomic Operations & Variables

 Java supports several types int compareAndSwapInt
of atomicity, e.q. (Object o, long offset,
int expected, int updated) {
START ATOMIC() ;
« Low-level atomic operations int *base = (int *) o;
in the Java Unsafe class int oldValue = base[offset];
if (oldvValue == expected)

base[offset] = updated;
END ATOMIC() ;
return oldValue; \\

* Its “compare & swap” (CAS) }

methods are quite useful

Atomically compare the contents of memory
with a given value & modify contents to a
new given value iff they are the same

See upcoming lesson on “Implementing Java Atomic Operations’




Overview of Java Atomic Operations & Variables

 Java supports several types void lock(Object o, long offset) {
while (compareAndSwapInt

of atomicity, e.q.
Y, €9 (o, offset, 0, 1) > 0);

» Low-level atomic operations
in the Java Unsafe class

void unlock (Object o, long offset) {
START ATOMIC () ;
int *base = (int *) o;
base[offset] = 0;
END ATOMIC () ;

« CAS methods can be used }
to implement efficient “lock
free” algorithms

See en.wikipedia.org/wiki/Non-blocking algorithm



http://en.wikipedia.org/wiki/Non-blocking_algorithm

Overview of Java Atomic Operations & Variables

« Java supports several types void lock(Object o, long offset) {
of atomicity, e.g. while \(compareAndSwapInt
' (o, offset, 0, 1) > 0);
}
« Low-level atomic operations Uses CAS to implement a
in the Java Unsafe class simple "mutex” spin-lock

/

void unlock (Object o, long offset) {
START ATOMIC () ;
int *base = (int *) o;
base[offset] = 0;
END ATOMIC () ;
« CAS methods can be used }
to implement efficient “lock

free” algorithms

See upcoming lesson on “Implementing Java Atomic Operations’




Overview of Java Atomic Operations & Variables

» Java supports several types
of atomicity, e.g. %(//“ EMERGING TECHNOLOGIES

» Low-level atomic operations
in the Java Unsafe class "Engineering Concurrent Library Components”

Doug Lea

Day 2 - April 3, 2013 - 1:30 PM - Salon C

phillyemergingtech.com

» Synchronizers in the Java Class
Library use CAS methods extensively

See www.youtube.com/watch?v=sq0MX3fHkro



http://www.youtube.com/watch?v=sq0MX3fHkro

Overview of Java Atomic Operations & Variables

« Java supports several types
of atomicity, e.g.

o Atomic classes

Package java.util.concurrent.atomic

A small toolkit of classes that support lock-free thread-safe programming on single variables.

See: Description

Class

AtomicBoolean
Atomicinteger

AtomicintegerArray

AtomicintegerFieldUpdater<T>

AtomicLong

AtomicLongArray

AtomicLongFieldUpdater<T>

AtomicMarkableReference<V>

AtomicReference<V>

AtomicReferenceArray<E>

Description
A boolean value that may be updated atomically.
An int value that may be updated atomically.

An int array in which elements may be updated
atomically.

A reflection-based utility that enables atomic updates
to designated volatile int fields of designated
classes.

A long value that may be updated atomically.

A long array in which elements may be updated
atomically.

A reflection-based utility that enables atomic updates
to designated volatile long fields of designated
classes.

An AtomicMarkableReference maintains an object
reference along with a mark bit, that can be updated
atomically.

An object reference that may be updated atomically.

An arrav of object references in which elements mav

See upcoming lesson on “Java Atomic Operations & Classes”




Overview of Java Atomic Operations & Variables

« Java supports several types
of atomicity, e.g.

o Atomic classes

« Use Java Unsafe internally
to implement “lock-free”
methods

Package java.util.concurrent.atomic

A small toolkit of classes that support lock-free thread-safe programming on single variables.

See: Description

Class Summary |
Class

AtomicBoolean
Atomicinteger

AtomicintegerArray

AtomicintegerFieldUpdater<T>

AtomiclLong

AtomicLongArray

AtomicLongFieldUpdater<T>

AtomicMarkableReference<V>

AtomicReference<V>

AtomicReferenceArray<E>

Description
A boolean value that may be updated atomically.
An int value that may be updated atomically.

An int array in which elements may be updated
atomically.

A reflection-based utility that enables atomic updates
to designated volatile int fields of designated
classes.

A long value that may be updated atomically.

A long array in which elements may be updated
atomically.

A reflection-based utility that enables atomic updates
to designated volatile long fields of designated
classes.

An AtomicMarkableReference maintains an object
reference along with a mark bit, that can be updated
atomically.

An object reference that may be updated atomically.

An arrav of object references in which elements mav

See docs.orade.com/javase/8/docs/api/java/util/concurrent/atomic/package-summary.htmi



https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/package-summary.html

Overview of Java Atomic Operations & Variables

« Java supports several types
of atomicity, e.g.

Class AtomicBoolean

java.lang.Object
java.util.concurrent.atomic.AtomicBoolean

All Implemented Interfaces:

Serializable
e Aftomic C/aSSES public class AtomicBoolean
. extends Object
« Use Java Unsafe internally implements Serializable
tO |mp|ement “|OC|(-fI‘ee" A boolean value that may be updated atomically. See the
methods :
] Class AtomicLong
- eg., Atomchong & e ang Objec
AtomicBoolean javalang Number

java.util.concurrent.atomic.AtomiclLong

All Implemented Interfaces:

Serializable

public class Atomiclong
extends Number
implements Serializable

A long value that may be updated atomically. See the

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicBoolean.html
& docs.oradle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicLong.html



http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicBoolean.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicLong.html

End of Overview of Java
Atomic Operations & Variables

22



