
Overview of Atomic Operations

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software 

Integrated Systems 

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Lesson
• Understand what atomic operations are



3

Learning Objectives in this Lesson
• Understand what atomic operations are

• Recognize key concepts associated with 
atomic operations in Java



4

Overview of
Atomic Operations



5

Overview of Atomic Operations
• Atomic operations ensure changes to 

a field are always consistent & visible 
to other threads

See docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html

http://docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html


6

• Atomic operations ensure changes to 
a field are always consistent & visible 
to other threads

• An atomic operation is one that 
effectively happens all at once
or it doesn’t happen at all

Overview of Atomic Operations

See en.wikipedia.org/wiki/Linearizability

http://en.wikipedia.org/wiki/Linearizability


7

• Atomic operations ensure changes to 
a field are always consistent & visible 
to other threads

• An atomic operation is one that 
effectively happens all at once
or it doesn’t happen at all

• i.e., it can’t stop in the middle
& leave an inconsistent state

Overview of Atomic Operations



8

• Atomic operations ensure changes to 
a field are always consistent & visible 
to other threads

• An atomic operation is one that 
effectively happens all at once
or it doesn’t happen at all

• Any side effects of an atomic 
operation aren’t visible until the 
operation completes

Overview of Atomic Operations



9

Key Concepts Related to 
Java Atomic Operations



10

• Three key concepts are associated 
with atomic operations in Java

See jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html

Key Concepts Related to Java Atomic Operations

http://jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html


11

• Three key concepts are associated 
with atomic operations in Java

• Atomicity deals w/which operations 
have indivisible effects

class NonAtomicOps { 

long mCounter = 0; 

void increment() { // Thread T2
for (;;) { 

mCounter++;

} 

} 

void decrement() { // Thread T1
for (;;) { 

mCounter--;

} 

} 

...

} 

Key Concepts Related to Java Atomic Operations



12

• Three key concepts are associated 
with atomic operations in Java

• Atomicity deals w/which operations 
have indivisible effects

class NonAtomicOps { 

long mCounter = 0; 

void increment() { // Thread T2
for (;;) { 

mCounter++;

} 

} 

void decrement() { // Thread T1
for (;;) { 

mCounter--;

} 

} 

...

} 

Key Concepts Related to Java Atomic Operations

Mutable shared state



13

• Three key concepts are associated 
with atomic operations in Java

• Atomicity deals w/which operations 
have indivisible effects

class NonAtomicOps { 

long mCounter = 0; 

void increment() { // Thread T2
for (;;) { 

mCounter++;

} 

} 

void decrement() { // Thread T1
for (;;) { 

mCounter--;

} 

} 

...

} 

Key Concepts Related to Java Atomic Operations

The behavior of increment() & 
decrement() running concurrently 
is undefined & not predictable.. 



14

• Three key concepts are associated 
with atomic operations in Java

• Atomicity deals w/which operations 
have indivisible effects

• Visibility determines when a thread 
can see the effects of another

class LoopMayNeverEnd { 

boolean mDone = false; 

void work() {

// Thread T2 read

while (!mDone) { 

// do work 

} 

} 

void stopWork() { 

// Thread T1 write

mDone = true; 

} 

...

} 

Key Concepts Related to Java Atomic Operations



15

• Three key concepts are associated 
with atomic operations in Java

• Atomicity deals w/which operations 
have indivisible effects

• Visibility determines when a thread 
can see the effects of another

class LoopMayNeverEnd { 

boolean mDone = false; 

void work() {

// Thread T2 read

while (!mDone) { 

// do work 

} 

} 

void stopWork() { 

// Thread T1 write

mDone = true; 

} 

...

} 

Key Concepts Related to Java Atomic Operations

Mutable shared state



16

• Three key concepts are associated 
with atomic operations in Java

• Atomicity deals w/which operations 
have indivisible effects

• Visibility determines when a thread 
can see the effects of another

class LoopMayNeverEnd { 

boolean mDone = false; 

void work() {

// Thread T2 read

while (!mDone) { 

// do work 

} 

} 

void stopWork() { 

// Thread T1 write

mDone = true; 

} 

...

} 

Key Concepts Related to Java Atomic Operations

Thread T2 may never stop, even 
after Thread T1 sets mDone to true..



17

• Three key concepts are associated 
with atomic operations in Java

• Atomicity deals w/which operations 
have indivisible effects

• Visibility determines when a thread 
can see the effects of another

• Ordering determines when the 
operations in one thread occur out 
of order wrt to other thread(s)

class BadlyOrdered {

boolean a = false;

boolean b = false;

void method1(){ // Thread T1
a = true;

b = true;

}

boolean method2(){ // Thread T2
boolean r1 = b; // sees true

boolean r2 = a; // sees false

boolean r3 = a; // sees true

return (r1 && !r2) && r3; 

// returns true

}

}

Key Concepts Related to Java Atomic Operations



18

• Three key concepts are associated 
with atomic operations in Java

• Atomicity deals w/which operations 
have indivisible effects

• Visibility determines when a thread 
can see the effects of another

• Ordering determines when the 
operations in one thread occur out 
of order wrt to other thread(s)

class BadlyOrdered {

boolean a = false;

boolean b = false;

void method1(){ // Thread T1
a = true;

b = true;

}

boolean method2(){ // Thread T2
boolean r1 = b; // sees true

boolean r2 = a; // sees false

boolean r3 = a; // sees true

return (r1 && !r2) && r3; 

// returns true

}

}

Key Concepts Related to Java Atomic Operations

Mutable shared state



19

• Three key concepts are associated 
with atomic operations in Java

• Atomicity deals w/which operations 
have indivisible effects

• Visibility determines when a thread 
can see the effects of another

• Ordering determines when the 
operations in one thread occur out 
of order wrt to other thread(s)

class BadlyOrdered {

boolean a = false;

boolean b = false;

void method1(){ // Thread T1
a = true;

b = true;

}

boolean method2(){ // Thread T2
boolean r1 = b; // sees true

boolean r2 = a; // sees false

boolean r3 = a; // sees true

return (r1 && !r2) && r3; 

// returns true

}

}

Key Concepts Related to Java Atomic Operations

Fields a & b may appear in thread T2 in 
an order different than set in thread T1!



20

End of Overview of Java 
Atomic Operations


