Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderhilt University
Nashville, Tennessee, USA



mailto:d.schmidt@vanderbilt.edu

Learning Objectives in thls Lesson

» Understand what atomic operations are




Learning Objectives in this Lesson

o

 Recognize key concepts associated with §
atomic operations in Java




Overview of
Atomic Operations




Overview of Atomic Operations

 Atomic operations ensure changes to
a field are always consistent & visible
to other threads

Atomic Access

In programming, an atomic action is one that
effectively happens all at once. An atomic action
cannot stop in the middle: it either happens
completely, or it doesn't happen at all. No side
effects of an atomic action are visible until the action
is complete.

We have already seen that an increment expression,
such as c++, does not describe an atomic action.
Even very simple expressions can define complex
actions that can decompose into other actions.
However, there are actions you can specify that are
atomic:

+ Reads and writes are atomic for reference
variables and for most primitive variables (all
types except long and double).

« Reads and writes are atomic for all variables
declared volatile (including long and
double variables).

See docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html



http://docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html

Overview of Atomlc Operatlons

« Atomic operations ensure changes to
a field are always consistent & visible §
to other threads ‘

« An gtomic operation is one that
effectively happens all at once
or it doesn’t happen at all

See en.wikipedia.org/wiki/Linearizability



http://en.wikipedia.org/wiki/Linearizability

Overview of Atomlc Operatlons

« Atomic operations ensure changes to
a field are always consistent & visible §
to other threads ‘

« An gtomic operation is one that
effectively happens all at once
or it doesn’t happen at all

* j.e,, it can’t stop in the middle
& leave an inconsistent state




to other threads

Overview of Atomic Operations
« Atomic operations ensure changes to
AL L /4
« Any side effects of an atomic
operation aren’t visible until the

a field are always consistent & visible
operation completes N

“'NG




Key Concepts Related to
Java Atomic Operations




Key Concepts Related to Java Atomic Operatlons

» Three key concepts are associated
with atomic operations in Java

See jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html



http://jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html

Key Concepts Related to Java Atomic Operations

» Three key concepts are associated class NonAtomicOps ({

with atomic operations in Java long mCounter = 0;
« Atomicity deals w/which operations
have indivisible effects void increment() { // Thread T,
R for (;;) {
mCounter++;

}
}

void decrement() { // Thread T,
for (;;) {
mCounter--;

11



Key Concepts Related to Java Atomic Operations

» Three key concepts are associated class NonAtomicOps ({

with atomic operations in Java long mCounter = 0;
« Atomicity deals w/which operations
have indivisible effects void increment() \{ // Thread T,
\ for (;;) {
mCounter++;
}
} Mutable shared state

void decrement() { // Thread T,
for (;;) {
mCounter--;

12



Key Concepts Related to Java Atomic Operations

» Three key concepts are associated class NonAtomicOps ({

with atomic operations in Java long mCounter = 0;
« Atomicity deals w/which operations
have indivisible effects void increment() { // Thread T,
N for (;;) {
mCounter++;

}
}

void decrement() { \// Thread T,
for (;;) {
mCounter--;

- The behavior of increment() &
} decrement() running concurrently
/s undefined & not predictable..

13



Key Concepts Related to Java Atomic Operations

« Three key concepts are associated class LoopMayNeverEnd {
with atomic operations in Java boolean mDone = false;

void work () {
// Thread T, read
 Visibility determines when a thread while (!mDone) {

can see the effects of another } // do work

}

void stopWork () ({
// Thread T, write
mDone = true;

}

14



Key Concepts Related to Java Atomic Operations

» Three key concepts are associated

with atomic operations in Java

class LoopMayNeverEnd ({
boolean mDone = false;

void work () {
// Thread T, read

 Visibility determines when a thread while (!mDone) {

can see the effects of another

// do work

}
} Mutable shared state

void stopWork () ({
// Thread T, write
mDone = true;

}

15



Key Concepts Related to Java Atomic Operations

« Three key concepts are associated class LoopMayNeverEnd {
with atomic operations in Java boolean mDone = false;

void work () {
// Thread T, read
 Visibility determines when a thread while (!mDone) {

can see the effects of another // do work
}

}

Thread T, may never stop, even
after Thread T, sets mDone to true..

void stopWork () ({ ///ﬁ
// Thread T, write

mDone = true;

}

16



Key Concepts Related to Java Atomic Operations

» Three key concepts are associated
with atomic operations in Java

 Ordering determines when the
operations in one thread occur out
of order wrt to other thread(s)

class BadlyOrdered {

boolean a = false;
boolean b = false;

void methodl(){ // Thread T,
a = true;
b = true;

boolean method2(){ // Thread T,
boolean rl = b; // sees true
boolean r2 = a; // sees false
boolean r3 = a; // sees true
return (rl && 'r2) && r3;

// returns true




Key Concepts Related to Java Atomic Operations

» Three key concepts are associated
with atomic operations in Java

 Ordering determines when the
operations in one thread occur out
of order wrt to other thread(s)

class BadlyOrdered {

boolean a = false;
boolean b = false;

void methodl () {\// Thread T,
a = true;
b = true;

Mutable shared state

boolean method2(){ // Thread T,
boolean rl = b; // sees true
boolean r2 = a; // sees false
boolean r3 = a; // sees true
return (rl && 'r2) && r3;

// returns true




Key Concepts Related to Java Atomic Operations

» Three key concepts are associated
with atomic operations in Java

 Ordering determines when the
operations in one thread occur out
of order wrt to other thread(s)

class BadlyOrdered {

boolean a = false;
boolean b = false;

void methodl () { // Thread T,
a = true;

b = true;\\\\\\l
}

Fields a & b may appear in thread T, in
an order different than set in thread T,!

boolean method2(){/¢/ Thread T,
boolean rl = b; // sees true
boolean r2 = a; // sees false
boolean r3 = a; // sees true
return (rl && 'r2) && r3;

// returns true




End of Overview of Java
Atomic Operations

20



