
Overview of Java Synchronizers

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand the purpose of Java synchronizers

3

Overview of Java
Synchronizers

4

• A Java synchronizer is an object used to
control the flow of cooperating threads
based on its state

See en.wikipedia.org/wiki/Synchronization_(computer_science)

Overview of Java Synchronizers

https://en.wikipedia.org/wiki/Synchronization_(computer_science)

5

• Java synchronizers ensure interactions between threads obey certain
properties

Overview of Java Synchronizers

6

• Java synchronizers ensure interactions between threads obey certain
properties, e.g.

• Don’t corrupt shared mutable
state

Overview of Java Synchronizers

See henrikeichenhardt.blogspot.com/2013/06/why-shared-mutable-state-is-root-of-all.html

http://henrikeichenhardt.blogspot.com/2013/06/why-shared-mutable-state-is-root-of-all.html

7

• Java synchronizers ensure interactions between threads obey certain
properties, e.g.

• Don’t corrupt shared mutable
state

Overview of Java Synchronizers

class NonAtomicOps {

long mCounter = 0;

void increment() {

// Thread T1
for (;;) mCounter++;

}

void decrement() {

// Thread T2
for (;;) mCounter--;

}

...

}

Running increment() & decrement()
concurrently yields undefined behavior
since mCounter is shared mutable data

See tutorials.jenkov.com/java-concurrency/race-conditions-and-critical-sections.html

http://tutorials.jenkov.com/java-concurrency/race-conditions-and-critical-sections.html

8

• Java synchronizers ensure interactions between threads obey certain
properties, e.g.

• Don’t corrupt shared mutable
state

Overview of Java Synchronizers

class AtomicOps {

long mCounter = 0;

synchronized void increment() {

// Thread T1
for (;;) mCounter++;

}

synchronized void decrement() {

// Thread T2
for (;;) mCounter--;

}

...

}

Running increment() & decrement() concurrently yields correct behavior since
mCounter is shared mutable data synchronized at the (coarse-grained) method level

See tutorials.jenkov.com/java-concurrency/synchronized.html

http://tutorials.jenkov.com/java-concurrency/synchronized.html

9

• Java synchronizers ensure interactions between threads obey certain
properties, e.g.

• Don’t corrupt shared mutable
state

Overview of Java Synchronizers

class AtomicOps {

long mCounter = 0;

void increment() { // Thread T1
for (;;) synchronized

{ mCounter++; }

}

void decrement() { // Thread T2
for (;;) synchronized

{ mCounter--; }

}

...

}

Running increment() & decrement() concurrently yields correct behavior since
mCounter is shared mutable data synchronized at the (fine-grained) statement level

See tutorials.jenkov.com/java-concurrency/synchronized.html

http://tutorials.jenkov.com/java-concurrency/synchronized.html

10

• Java synchronizers ensure interactions between threads obey certain
properties, e.g.

• Don’t corrupt shared mutable
state

• Occur in the right order, at
the right time, & under the
right conditions

Overview of Java Synchronizers

11

% java PingPongWrong
Ready...Set...Go!
Ping!(1)
Ping!(2)
Ping!(3)
Ping!(4)
Ping!(5)
Ping!(6)
Ping!(7)
Ping!(8)
Ping!(9)
Ping!(10)
Pong!(1)
Pong!(2)
Pong!(3)
Pong!(4)
Pong!(5)
Pong!(6)
Pong!(7)
Pong!(8)
Pong!(9)
Pong!(10)
Done!

• Java synchronizers ensure interactions between threads obey certain
properties, e.g.

• Don’t corrupt shared mutable
state

• Occur in the right order, at
the right time, & under the
right conditions

Overview of Java Synchronizers

run()

ping :

Thread

pong :

Thread

print("ping")

run()

print("pong")

The unsynchronized
version is buggy

See upcoming lesson on “Java Semaphore: Coordinating Threads”

12

• Java synchronizers ensure interactions between threads obey certain
properties, e.g.

• Don’t corrupt shared mutable
state

• Occur in the right order, at
the right time, & under the
right conditions

Overview of Java Synchronizers

run()

ping :

Thread

pong :

Thread

print("ping")

run()

print("pong")

% java PlayPingPong
Ready...Set...Go!
Ping!(1)
Pong!(1)
Ping!(2)
Pong!(2)
Ping!(3)
Pong!(3)
Ping!(4)
Pong!(4)
Ping!(5)
Pong!(5)
Ping!(6)
Pong!(6)
Ping!(7)
Pong!(7)
Ping!(8)
Pong!(8)
Ping!(9)
Pong!(9)
Ping!(10)
Pong!(10)
Done!

The synchronized
version coordinates
the threads properly

13

Pervasiveness of
Synchronizers in Java

14

Additional Frameworks & Languages

Operating System Kernel

Applications

System Libraries

Java Virtual Machine

Threading & Synchronization Packages

• Multiple layers of synchronizers are
provided on the Java platform

Pervasiveness of Java Synchronizer Classes

15

Additional Frameworks & Languages

Operating System Kernel

Applications

System Libraries

Java Execution Environment (e.g., JVM, ART, etc)

Threading & Synchronization Packages

• Multiple layers of synchronizers are
provided on the Java platform, e.g.

• The Java language contains some
features that synchronize threads

Pervasiveness of Java Synchronizer Classes

e.g., volatile variables &
built-in monitor objects

See en.wikipedia.org/wiki/Java_(programming_language)

https://en.wikipedia.org/wiki/Java_(programming_language)

16

Additional Frameworks & Languages

Operating System Kernel

Applications

System Libraries

Java Execution Environment (e.g., JVM, ART, etc)

Threading & Synchronization Packages

• Multiple layers of synchronizers are
provided on the Java platform, e.g.

• The Java language contains some
features that synchronize threads

• Other synchronizers are provided
by the Java Class Library

Pervasiveness of Java Synchronizer Classes

e.g., Java atomics, locks,
& other synchronizers

See en.wikipedia.org/wiki/Java_Class_Library

https://en.wikipedia.org/wiki/Java_Class_Library

17

Threading coverage Synchronization coverage

• We focus about equally on Java synchronization mechanisms & on Java
threading mechanisms in this course

Pervasiveness of Java Synchronizer Classes

18

• Synchronization complexity arises from
coordinating the interactions of entities
that run concurrently

Pervasiveness of Java Synchronizer Classes

19

Pervasiveness of Java Synchronizer Classes

Java’s parallelism frameworks helps eliminate
some of this complexity via “divide and conquer”

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

fork()

fork() fork()

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

join() join()

join()

join() join() join() join()

• Synchronization complexity arises from
coordinating the interactions of entities
that run concurrently

20

End of Overview of
Java Synchronizers

