Java Thread: Evaluation

Douglas C. Schmidt
@ d.schmidt@uandernilt.edu
- www.dre.vanderhilt.edu/~schmidt

E 7 Institute for Software
Integrated Systems
Vanderhilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Know the pros & cons of Java
thread programming models

Pros & Cons of Java Thread
Programming Models

Pros & Cons of Java Thread Programming Models

* Now that we've examined the source code for the GCD concurrent app we'll
summarize the pros & cons of the various Java thread programming models

Pros & Cons of Java Thread Programming Models

* Pros with extending Thread

public class GCDThread
extends Thread {

private MainActivity mActivity;

public GCDThread setActivity
(MainActivity activity) ({
mActivity = activity;
return this;

}

private int computeGCD
(int numberl, number2) ({

}

public void run()

{ ... 1}

Pros & Cons of Java Thread Programming Models

* Pros with extending Thread

« It's straightforward to extend
the Thread super class

public class GCDThread
extends Thread ({

private MainActivity mActivity;

public GCDThread setActivity
(MainActivity activity) ({
mActivity = activity;
return this;

}

private int computeGCD
(int numberl, number2) ({

}

public void run()

{ ... 1}

Pros & Cons of Java Thread Programming Models

* Pros with extending Thread

« It's straightforward to extend
the Thread super class

« Just override the run() hook
method!

public class GCDThread
extends Thread {

private MainActivity mActivity;

public GCDThread setActivity
(MainActivity activity) ({
mActivity = activity;
return this;

}

private int computeGCD
(int numberl, number2) ({

}

public void run/()

{ ...}

Pros & Cons of Java Thread Programming Models

 Pros with extending Thread public class GCDThread
extends Thread {

private MainActivity mActivity;
« All state & methods are
consolidated in one place public GCDThread setActivity
(MainActivity activity) {
mActivity = activity;
return this;

// Main app
Thread thread = new GCDThread()
.setActivity(this)...;

thread.start () ;

Pros & Cons of Java Thread Programming Models

 Pros with extending Thread public class GCDThread
extends Thread {

private MainActivity mActivity;
« All state & methods are
consolidated in one place public GCDThread setActivity

- MainActivity activit
- Enables central allocation & (y y)

mActivity = activity;
management of the thread return this:

// Main app
Thread thread = new GCDThread()
.setActivity(this)...;

thread.start () ;

Pros & Cons of Java Thread Programming Models

Pros with extending Thread public class GCDThread
extends Thread {

private MainActivity mActivity;
« All state & methods are

consolidated in one place public GCDThread setActivity
(MainActivity activity) {
mActivity = activity;
return this;

 This design is useful when the }

thread must be updated during

runtime configuration changes

// Main app
Thread thread = new GCDThread()
.setActivity(this)...;

thread.start () ;

10

Pros & Cons of Java Thread Programming Models

Pros with extending Thread public class GCDThread
extends Thread {

private MainActivity mActivity;
« All state & methods are

consolidated in one place public GCDThread setActivity
(MainActivity activity) {
mActivity = activity;
return this;

 This design is useful when the }

thread must be updated during

runtime configuration changes
/ Main app

* €39, in_terruPting/ reStart?ng Thread thread = new GCDThread()
a running thread & reading/ .setActivity (this)...;

writing its state
thread.start () ;

See the upcoming lessons on “Managing the Java Thread Lifecycle’

Pros & Cons of Java Thread Programming Models

« Cons with extending Thread public class GCDThread
extends Thread {

private int computeGCD
(int numberl, number2) ({

}

public void run() {

}

12

Pros & Cons of Java Thread Programming Models

« Cons with extending Thread public class GCDThread

extends Thread
e A subclass must extend the {
Thread superclass

private int computeGCD
(int numberl, number2) ({

}

public void run() {

}

13

Pros & Cons of Java Thread Programming Models

Cons with extending Thread public class GCDThread

extends Thread
e A subclass must extend the {

Thread superclass private int computeGCD
 This is restrictive since Java (int numberl, number2) {
only allows one superclass
per subclass! }

public void run() {

}

See docs.oracle.com/javase/tutorial/java/IandI/subclasses.html

https://docs.oracle.com/javase/tutorial/java/IandI/subclasses.html

Pros & Cons of Java Thread Programming Models

* Pros of implementing Runnable public class GCDRunnable
implements Runnable,

implements Serializable,
extends Random ({

private int computeGCD
(int numberl, number2) {

}

public void run() {

}

15

Pros & Cons of Java Thread Programming Models

* Pros of implementing Runnable public class GCDRunnable

A subcl : | t Itiol implements Runnable,
_ SUDCIass can impiement muitipie implements Serializable,
interfaces

extends Random ({

private int computeGCD
(int numberl, number2) {

}

public void run() {

}

See docs.oracle.com/javase/tutorial/java/concepts/interface.html

https://docs.oracle.com/javase/tutorial/java/concepts/interface.html

Pros & Cons of Java Thread Programming Models

* Pros of implementing Runnable public class GCDRunnable

A subdl ol ¢ itip| implements Runnable,
SUDCIass Ccan Impiement muitpie implements Serializable,

interfaces extends Random ({
« Which enables it to extend e
a different superclass private int computeGCD

(int numberl, number2) {

}

public void run() {

}

See docs.oracle.com/javase/tutorial/java/concepts/interface.html

https://docs.oracle.com/javase/tutorial/java/concepts/interface.html

Pros & Cons of Java Thread Programming Models

* Pros of implementing Runnable public class GCDRunnable
implements Runnable,

{

« Runnables are flexible since they }
can be reused in other contexts

GCDRunnable runnableCommand =
new GCDRunnable(...);

ExecutorService executor =
Executors.newFixedThreadPool
(POOL_SIZE);

executor.execute
(runnableCommand) ;

See upcoming lessons on “the Java Executor framework”

Pros & Cons of Java Thread Programming Models

 Cons of implementing Runnable public class GCDRunnable
implements Runnable,

-

GCDRunnable runnableCommand =
new GCDRunnable(...);

Thread thr =
new Thread (runnableCommand) ;

thr.start () ;

19

Pros & Cons of Java Thread Programming Models

 Cons of implementing Runnable public class GCDRunnable

: . : . implements Runnable,
* Yields more "moving parts (

¥ ¢

CAUTION |
GCDRunnable runnableCommand =
M OVI NG new GCDRunnable(...);
PARTS | e oo -

new Thread (runnableCommand) ;

\ —

thr.start () ;

20

Pros & Cons of Java Thread Programming Models
 Cons of implementing Runnable public class GCDRunnable
« Yields more “*moving parts” implements Runnable,

- o
* e.g., Runnable & Thread are
separate entities & must be }
managed/accessed separately

GCDRunnable runnableCommand =
new GCDRunnable(...);

Thread thr =
new Thread (runnableCommand) ;

thr.start () ;

This decoupling get complicated if a program needs to access the
state of a runnable, but only holds a reference to the thread object..

Pros & Cons of Java Thread Programming Models

 In practice, Java & Android software often implements Runnable rather than
extending Thread

Thread Runnable

run() run()
start()

*

MyRunnable
AN Y

run()

MyThread

run()

Thread

Thread(Runnable)
O start()

22

Pros & Cons of Java Thread Programming Models

 In practice, Java & Android software often implements Runnable rather than

extending Thread

« Lambda expressions have become a popular to provide computations to

threads on Java 8-based platforms

new Thread(() ->
System.out.println("hello world"))

o /// \\\\\\\\\\\\\\s

Define a computation that will
(run in a separate Java thread

)

Java8

Runtime
thread
stack

See www.drdobbs.com/jvm/lambda-expressions-in-java-8/240166764

http://www.drdobbs.com/jvm/lambda-expressions-in-java-8/240166764

End of Java Thread:
Evaluation

24

