
Java Thread: 

How Threads Run

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software 

Integrated Systems 

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

• Understand how Java threads support concurrency

• Learn how our case study app works

• Know alternative ways of giving code 
to a thread

• Learn how to pass parameters to 
a Java thread

• Know how to run a Java thread

Learning Objectives in this Part of the Lesson

: My

Component

start()

run()

new()

: MyThread

onCreate()



3

Running
Java Threads 



4

• There are multiple layers involved 
in creating & starting a thread

Running Java Threads

Operating System Kernel

System Libraries

Java Execution Environment (e.g., JVM, ART, etc)

Threading & Synchronization Packages

: My

Component

start()

run()

new()

: MyThread

onCreate()

See the upcoming lessons on “Managing the Java Thread Lifecycle” 



5

• There are multiple layers involved 
in creating & starting a thread

• Creating a new thread object 
doesn’t allocate a run-time call 
stack of activation records

: My

Component

new()

Running Java Threads

: MyThread

onCreate()

See en.wikipedia.org/wiki/Call_stack

https://en.wikipedia.org/wiki/Call_stack


6

• There are multiple layers involved 
in creating & starting a thread

• Creating a new thread object 
doesn’t allocate a run-time call 
stack of activation records

• The runtime stack & other thread 
resources are only allocated after 
the start() method is called

: My

Component

start()

run()

new()

Running Java Threads

: MyThread

onCreate()



7

• There are multiple layers involved 
in creating & starting a thread

• Creating a new thread object 
doesn’t allocate a run-time call 
stack of activation records

• The runtime stack & other thread 
resources are only allocated after 
the start() method is called

: My

Component

start()

run()

new()

Running Java Threads

: MyThread

onCreate()

The start() method can only be called once per thread object



8

• There are multiple layers involved 
in creating & starting a thread

• Creating a new thread object 
doesn’t allocate a run-time call 
stack of activation records

• The runtime stack & other thread 
resources are only allocated after 
the start() method is called

• The Java execution environment calls 
a thread’s run() hook method after 
start() creates its resources 

: My

Component

start()

run()

new()

Running Java Threads

: MyThread

onCreate()

See wiki.c2.com/?HookMethod

http://wiki.c2.com/?HookMethod


9

• There are multiple layers involved 
in creating & starting a thread

• Creating a new thread object 
doesn’t allocate a run-time call 
stack of activation records

• The runtime stack & other thread 
resources are only allocated after 
the start() method is called

• The Java execution environment calls 
a thread’s run() hook method after 
start() creates its resources 

• Each thread can run concurrently &
block independently

: My

Component

start()

run()

new()

Running Java Threads

: MyThread

onCreate()



10

• Any code can generally run in a thread : My

Component

start()

run()

new()

Running Java Threads

: MyThread

onCreate()

public void run(){

// code to run goes here

}



11

• Any code can generally run in a thread

• However, windowing toolkits often 
restrict which thread can access 
GUI components

: My

Component

start()

run()

new()

Running Java Threads

: MyThread

onCreate()



12

• Any code can generally run in a thread

• However, windowing toolkits often 
restrict which thread can access 
GUI components

• e.g., only the Android UI thread 
can access GUI components 

: My

Component

start()

run()

new()

Running Java Threads

: MyThread

See developer.android.com/training/multiple-threads/communicate-ui.html

onCreate()

https://developer.android.com/training/multiple-threads/communicate-ui.html


13

• A thread can live as long as its run() hook 
method hasn’t returned

Running Java Threads

: My

Component

start()

new()

run()

: MyThread

onCreate()



14

• A thread can live as long as its run() hook 
method hasn’t returned

• The underlying thread scheduler can 
suspend & resume a thread many 
times during its lifecycle

Running Java Threads

: My

Component

onCreate()

start()

run()

new()

: MyThread

See en.wikipedia.org/wiki/Scheduling_(computing)

https://en.wikipedia.org/wiki/Scheduling_(computing)


15

• A thread can live as long as its run() hook 
method hasn’t returned

• The underlying thread scheduler can 
suspend & resume a thread many 
times during its lifecycle

• Scheduler operations are largely invisible 
to user code, as long as synchronization 
is performed properly..

Running Java Threads

: My

Component

start()

run()

new()

: MyThread

onCreate()



16

• For a thread to execute “forever,” its run() 
hook method needs an infinite loop 

Running Java Threads

: My

Component

start()

run()

new()

: MyThread

public void run(){

while (true) { ... }

}

onCreate()



17

Running Java Threads
• The thread is dead after run() returns : My

Component

start()

run()

new()

: MyThread

onCreate()



18

Running Java Threads
• The thread is dead after run() returns

• A thread can end normally
: My

Component

start()

run()

new()

: MyThread

onCreate()

public void run(){

while (true) { 

...

if (someCondition())

return;

}

}



19

Running Java Threads
• The thread is dead after run() returns

• A thread can end normally

• Or an uncaught exception can
be thrown

: My

Component

start()

run()

new()

: MyThread

onCreate()

public void run(){

while (true) { 

...

if (someError())

throw new

SomeException();

}

}

See www.javamex.com/tutorials/exceptions/exceptions_uncaught_handler.shtml

http://www.javamex.com/tutorials/exceptions/exceptions_uncaught_handler.shtml


20

Running Java Threads
• The join() method allows one thread to 

wait for another thread to complete
: My

Component

start()

run()

new()

join()

: MyThread

onCreate()



21

Running Java Threads
• The join() method allows one thread to 

wait for another thread to complete
: My

Component

start()

run()

new()

join()

: MyThread

See upcoming lessons on “Java Barrier Synchronizers”

Simple form of “barrier synchronization”

onCreate()



22

: My

Component

Running Java Threads
• The join() method allows one thread to 

wait for another thread to complete

• Or a thread can simply evaporate!
onCreate()



23

: My

Component

Running Java Threads
• The join() method allows one thread to 

wait for another thread to complete

• Or a thread can simply evaporate!

• The Java execution environment
recycles thread resources 

onCreate()



24

: My

Component

Running Java Threads
• The join() method allows one thread to 

wait for another thread to complete

• Or a thread can simply evaporate!

• The Java execution environment
recycles thread resources 

• e.g., runtime stack of activation 
records, thread-specific storage, etc.

onCreate()



25

End of Java Thread: 
How Threads Run


