Java Thread:
Overview of the Gase Study App

Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderhilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

- Learn how our case study app works

RUN RUN RUN THREAD
RUNNABLE THREAD RUNNABLE

Entering run() with thread id Thread|Thread-2,5,main]
Iin run() with thread id Thread[Thread-2,5,main| the GCD of
234699192 and 9(907 is 1
Entering run() with thread id Thread|Thread-3,5,ma
th thread id Thread[Thread-3,5main] the
16761209 and -1049692312 is 1
In run() with thread id Thread[Thread-3,5,main| the GCD of
1724048167 and 945210314 is -1
In run() with thread id Thread[Thread-2,5,main] the GCD of
1406428969 and -1563988273 is -1
thread id Thread[Thread-2,5main] the GCD of
and -16182222¢ 5 -3
th thread id Th Thread-3,5main] the GCD of
0 593 is -1
() with thread id Thread[Thread-2,5,main] the GCD of
97 is -1

Ty e 10:46

RUN RUN RUN THREAD
RUNNABLE THREAD RUNNABLE

In run() with thread id ead[Thread-3,5main] the GCD of
966125466 and 1005383528 is 2
d Thread[Thread-2,5,main] the GCD of

7is-1
ad[Thread-3,5,main] the GCD of
1367496850 and - 43is1
In run() with thread | 2ad|[Thread-2,5main] the GCD of
1623111466 and -1298544474 is -2

See github.com/douglascraigschmidt/
POSA/tree/master/ex/M3/GCD/Concurrent

https://github.com/douglascraigschmidt/POSA/tree/master/ex/M3/GCD/Concurrent

Runtime Behavior of the
GCD Concurrent App

Runtime Behavior of the GCD Concurrent App

« Concurrently compute the greatest common divisor (GCD)
of two #’s, which is the largest integer that divides two
integers without a remainder

RUN RUN RUN THREAD
RUNNABLE THREAD RUMNABLE

thread id Thread[Thread-2, ain

Ty i 10:46

RUN RUN RUN THREAD
RUNNABLE THREAD RUNNABLE

sad-3,5,main] the GCD o
main] the GCD o
ead-3,5,main] the GCD o

hread-2,5,main| the GCD o

<< lava Class=>

(9 Thread

& yield()void

& currentThread(): Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

@ Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted():boolean
& isAlive()boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

See en.wikipedia.org/wiki/Greatest common_divisor

https://en.wikipedia.org/wiki/Greatest_common_divisor

Design of the GCD
Concurrent App

Design of the GCD Concurrent App

 This app shows various methods in Java’s Thread class & alternative ways of
giving code to a Java thread

z<Java Clasg==

(® MainActivity

_ =<<Java Clas_5:=-:=- N & MainActivity()
@ LifecycleLoggingActivity < onCreate(Bundle)-void
@ LifecycleLoggingActivity() @ runRunnable(View)void
< onCreate(Bundle)void &’/””/’4 @ runThread(View)void
< onStart()-void @ runThreadAndRunnable(View)void
< onResume()void @ println{String)-void
< onPause()void
o DﬂStDpI:}:'u‘Dilj -mActivity” 0.1 -rnAn:tivity A

< onRestart():void
< onDestroy()-void

=<<Java Class=>
(®GCDThread
=<Java Class>>
(® GCDRunnable & GCDThread()
r: . — @ setRandom{Random):GCDThread
GCDRunnable(MainActivity) o setActivity(MainActivity): GCDThread
= I:nmput_eGCD[mt_mt}:lnt = computeGCD(int, int):int
@ run()-void @ run()-void

See github.com/douglascraigschmidt/POSA/tree/master/ex/M3/GCD/Concurrent

https://github.com/douglascraigschmidt/POSA/tree/master/ex/M3/GCD/Concurrent

Design of the GCD Concurrent App

 This app shows various methods in Java’s Thread class & alternative ways of
giving code to a Java thread

=<Java Class>>
(® MainActivity
_ =<<Java Clas_5:=-:=- N & MainActivity()
@ LifecycleLoggingActivity < onCreate(Bundle)-void
@ LifecycleLoggingActivity() @ runRunnable(View)void
< onCreate(Bundle)void @ runThread(View)void
< onStart()-void @ runThreadAndRunnable(View)void
< onResume()void @ println{String)-void
< onPause()void
o DﬂStDpI:}:'u‘Dilj -mActivit 0.1 -rnAn:tivity A
< onRestart():void
< onDestroy()-void
=<<Java Class=>
(®GCDThread
=<Java Class>>
(3 GCDRunnable & GCDThread()
. — @ setRandom{Random):GCDThread

& GCDRunnable(MainActivity) o setActivity(MainActivity)- GCDThread

] I:nmput_eGCD[mt_mt}:lnt = computeGCD(int,int)-int

@ run()-void o run{)-void

Super class that logs various activity lifecycle hook methods to aid debugging

Design of the GCD Concurrent App

 This app shows various methods in Java’s Thread class & alternative ways of
giving code to a Java thread

z<Java Clasg==

(® MainActivity

<<Java Clasg=> & MainActivity()
@ LifecycleLoggingActivity < onCreate(Bundle)-void
@ LifecycleLoggingActivity() @ runRunnable(View)void
< onCreate(Bundle)void A @ runThread(View)void
< onStart()-void @ runThreadAndRunnable(View)void
< onResume()void @ println{String)-void
< onPause()void

< onStop():-void -mActivity” 0.1 -mActivity .1

< onRestart():void
< onDestroy()-void

=<<Java Class=>
(®GCDThread
=<Java Class>>
(® GCDRunnable & GCDThread()
r: . — @ setRandom{Random):GCDThread
GCDRunnable(MainActivity) o setActivity(MainActivity): GCDThread
= I:nmput_eGCD[mt_mt}:lnt = computeGCD(int, int):int
@ run()-void @ run()-void

Main entry point into the app that handles button presses from the user

Design of the GCD Concurrent App

 This app shows various methods in Java’s Thread class & alternative ways of
giving code to a Java thread

<<Java Class=>
® MainActivity Thread
<<Java Class=> & MainActivit
@ LifecycleLoggingActivity & DnCreate(EI};Erzdle}:uuid 2:2'_(2
@ LifecycleLoggingActivity() @ runRunnable(View)void ()
< onCreate(Bundle)void &’/””/’4 @ runThread(View)void
< onStart()-void @ runThreadAndRunnable(View)void
< onResume()void @ println{String)-void Zk
< onPause()void '
< onStop():void -mActivity” 0.1 -mActivity (.1
< onRestart():void GCDThread
< onDestroy()-void
run()

=< Java Class==

(®GCDThread
=<Java Class>>
(® GCDRunnable & GCDThread()
r: . — @ setRandom{Random):GCDThread
GCDRunnable(MainActivity) o setActivity(MainActivity): GCDThread
@ computeGLD(int, int)-int = computeGCD(int, int):int
@ run()-void

@ run()-void

Computes the GCD of two numbers by extending the Thread super class

Design of the GCD Concurrent App

 This app shows various methods in Java’s Thread class & alternative ways of
giving code to a Java thread

=<Java Class>>
(® MainActivity
Runnable & MainActivity()
< onCreate(Bundle)void
run() @ runRunnable(View)void
@ runThread(View):void
) @ runThreadAndRunnable(View)void
: @ println(String):void
GCDRunnable “mActivity’ 0.1 -mActivity Q.1
run()
Thread
=<<Java Class=>
Thread(Runnable) ®GCDThread
=<Java Class>>
O start() ©GCDRunnable & GCDThread)
r: . — @ setRandom{Random):GCDThread
GCDRunnable(MainActmity) o setActivity(MainActivity): GCDThread
= I:nmp_)ut_eGCD[mt_mt}_mt = computeGCD(int, int):int
@ run()-void @ run()-void

Computes the GCD of two numbers by implementing the Runnable interface

Design of the GCD Concurrent App

« We'll explore the implementations of these threading alternatives shortly

/:' o) X * Computes the greatest common divisor (GCD) of two numbers, which is
Computes the grgagestvcommon d1v1so? ‘GCD) of two number§, which is * the largest positive integer that divides two integers without a
* the largest positive integer that divides two integers without a * remainder. This implementation extends Thread and overrides its
* remainder. This implementation extends Random and implements the * run() hook method
* Runnable interface's run() hook method. */
i 4 . public class GCDThread
public class GCDRunnable extends Thread {
extends Random // Inherits random number generation capabilities. Jax
/..1mplements Runnable { * A reference to the MainActivity.
*/
* A reference 'to the MainActivity. private MainActivity mActivity;
*/
private final MainActivity mActivity; J*x
* Generate random numbers.
[** */
* Number of times to iterate, which is 100 million to ensure the private Random mRandom;
* program runs for a while. !
*/ Jxx
private final int MAX ITERATIONS = 100000000 * Number of times to iterate, which is 100 million to ensure the
* program runs for a while.
/tﬁ ./
* Number of times to iterate before calling print, which is 10 private final int MAX ITERATIONS = 100000000 ;
* million to ensure the program runs for a while. - 4
*/ [k
private final int MAX_PRINT_ITERATIONS = 10000000; * Number of times to iterate before calling print, which is 10
Jas * million to ensure the program runs for a while.
*/
* Hook method that runs for MAX_ITERATIONs computing the GCD of private final int MAX PRINT ITERATIONS = 10000000;
* randomly generated numbers. = = 4
ﬁ/ /ﬁi
publl? void run() { ») * Hook method that runs for MAX ITERATIONs computing the GCD of
final String threadString = " with thread id " + Thread.currentThread() ; * randomly generated numbers -
*/
mActivity.println("Entering run()" + threadString); public void run() (.

’ final String threadString = " with thread id " + Thread.currentThread() ;
// Generate random numbers and compute their GCDs.

mActivity.println("Entering run()" + threadString);
for (int i = 0; i < MAX ITERATIONS; ++i) {

// Generate two random numbers. // Generate random numbers and compute their GCDs.

int numberl = nextInt():;

int number2 = nextInt(); for (int i = 0; i < MAX ITERATIONS; ++i) {

. . . . // Generate two random numbers.
// Print results every 10 million iterations. int numberl = mRandom.nextInt() ;
if ((i % MAX_PRINT_ITERATIONS) == 0) int number? = mRandom.nextInt();
mActivity.println("In run()"
+ fhreadstring P // Print results every 10 million iterations.
+ the GCD of if ((i % MAX_PRINT_ITERATIONS) == 0)
+ ?umber} mActivity.println("In run()"
+ and + threadString + " the GCD of "
+ ?uyhef2 + numberl + " and " + number2 + " is "
+ is + computeGCD (numberl,
+ computeGCD (numberl, number2)) ;
number2)) ; } '

}
i . mActivity.println("Leaving run() " + threadString);
mActivity.println("Leaving run() " + threadString):; }

See github.com/douglascraigschmidt/POSA/tree/master/ex/M3/GCD/Concurrent

https://github.com/douglascraigschmidt/POSA/tree/master/ex/M3/GCD/Concurrent

Design of the GCD Concurrent App

* First, however, we'll show how to build & run the app

2 Concurrent [D:\Douglas Schmidt\Dropbox\POSA\POSA\ex\M3\GCD\Concurrent] - ..\app\src\mainyjava\vandy\moac\gcd\activities\GCDThread java [app] - Android Studio
File Edit View Navigate Code Analyze Refactor Build Run JTools VCS Window Help

= H S « ~ app ¥ L Nexus 6P API28 ¥ b & e 3 ML Gt v r 0O E 0Q
Concurrent app src main java vandy mooc ged activities | ‘€ GCDThread
= Android « 6 = [— © MainActivityjava € GCDThread java € GCDRunnablejava
@
e app . ey s
& .
- anifests package vandy.mooc.gcd.activities;
) java Za
v vandy.mooc (androidTest . . .
£ vandy.mooc (test) 1mp°rt Jjava. util.Random;
3
& vandy.mooc.gcd "2 w 10:46
~1 L
o activities) RUN RUN RUN THREAD
& GCDRunnable / % # RUNNABLE THREAD RUNNABLE
5 € GCDThread)
? ! LifecycleLoggingActivity ” L
5
E € MainActivity * y
§ utils o
9‘ . L
2 java (genera o I
e res)
x
res (generated)
A Gradle Scripts *
public class GCDThread
" extends Thread {
£
'§ * Kk
>
2
E £ A 1 o the
o i (]
*
g . . D
5 private MalinActivity
=
&l
*
* A
g
2 * Generate random nit
]
Z)
% *
= . - _ - — -
GCDThread computeGCD()
= TODO Terminal = 6: Logcat K 9: Version Control ~ *\ Build

[C] NDK Resolution Outcome: Project settings: Gradle model version=5.4.1, NDK version is UNKNOWN (a minute ago)

RUN
RUNNABLE

T wa 10:42

RUN RUN THREAD
THREAD RUMNABLE

Entering run() with thread id Thread[Thread-2,5,main]

h thread id

h thread
and -104

read|[Thread-2, 5 main] the GCO of
0907 is 1

1 id Thread|Thr 3,5,mair

read[Thread-3,5,main] the GCD of

312is 1

) with thread id Thread[Thread-3,5,main| the GCD of
1724048167 and 945270314 is -1
) with thread id Thread[Thread-2,5,main] the GCD of
69 and -1563988273 is -1

vith thread id
2 and-1618
h thread

Thread[Thread-2,5,main] the GCD of

222233is-3
hread[Thread-3,5,main] the GCD of

5210593 is -1
read[Thread-2,5,main] the GCD of

3597 is -1

ad[Thread-3,5,main] the GCD of

383528is 2

n() with thread
1367496850 and -
In run{) with thread

1623111466 and

66:25 CRLF =

1d[Thread-2,5,main] the GCD of

ie
ad|[Thread-2,5,main] the GCD of
544474 is -2

Q) Event Log

UTF-8 + 4spaces+ Git: master *

W

sjpeso

1a101dx3 8|4 a3meq]

Kb

12

End of Java Thread: Overview
of the Case Study App

13

