Java Thread:
Overview of the Case Study App

Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderbilt University
Nashville, Tennessee, USA
Learning Objectives in this Part of the Lesson

• Understand how Java threads support concurrency
• Learn how our case study app works

Runtime Behavior of the GCD Concurrent App
Runtime Behavior of the GCD Concurrent App

• Concurrently compute the greatest common divisor (GCD) of two #’s, which is the largest integer that divides two integers without a remainder

See en.wikipedia.org/wiki/Greatest_common_divisor
Design of the GCD Concurrent App
Design of the GCD Concurrent App

• This app shows various methods in Java’s Thread class & alternative ways of giving code to a Java thread

Design of the GCD Concurrent App

- This app shows various methods in Java’s Thread class & alternative ways of giving code to a Java thread

Super class that logs various activity lifecycle hook methods to aid debugging
Design of the GCD Concurrent App

• This app shows various methods in Java’s Thread class & alternative ways of giving code to a Java thread

Main entry point into the app that handles button presses from the user
Design of the GCD Concurrent App

- This app shows various methods in Java’s Thread class & alternative ways of giving code to a Java thread.

Computes the GCD of two numbers by extending the Thread super class
Design of the GCD Concurrent App

- This app shows various methods in Java’s Thread class & alternative ways of giving code to a Java thread

Computes the GCD of two numbers by implementing the Runnable interface

- `Runnable` interface:
 - `run()` method

- `GCDRunnable` class:
 - `run()` method

- `Thread` class:
 - `Thread(Runnable)` constructor
 - `start()` method

- `MainActivity` class:
 - `onCreate(Bundle):void`
 - `runRunnable(View):void`
 - `runThread(View):void`
 - `runThreadAndRunnable(View):void`
 - `println(String):void`
 - `-mActivity 0..1`

- `GCDThread` class:
 - `GCDRunnable(MainActivity)`
 - `computeGCD(int,int):int`
 - `run():void`
Design of the GCD Concurrent App

- We’ll explore the implementations of these threading alternatives shortly

```java
/**
 * Computes the greatest common divisor (GCD) of two numbers, which is
 * the largest positive integer that divides two integers without a
 * remainder. This implementation extends Random and implements the
 * Runnable interface's run() hook method.
 */
public class GCDRunnable
    extends Random // Inherits random number generation capabilities.
    implements Runnable {
    /**
     * A reference to the MainActivity.
     */
    private final MainActivity mMainActivity;
    /**
     * Number of times to iterate, which is 100 million to ensure the
     * program runs for a while.
     */
    private final int MAX_ITERATIONS = 100000000;
    /**
     * Number of times to iterate before calling print, which is 10
     * million to ensure the program runs for a while.
     */
    private final int MAX_PRINT_ITERATIONS = 10000000;
    /**
     * Hook method that runs for MAX_ITERATIONS computing the GCD of
     * randomly generated numbers.
     */
    public void run() {
        final String threadString = " with thread id " + Thread.currentThread();
        mMainActivity.println("Entering run() " + threadString);
        // Generate random numbers and compute their GCDs.
        for (int i = 0; i < MAX_ITERATIONS; ++i) {
            // Generate two random numbers.
            int number1 = nextInt();
            int number2 = nextInt();
            // Print results every 10 million iterations.
            if ((i % MAX_PRINT_ITERATIONS) == 0)
                mMainActivity.println("In run() "
                        + threadString + " the GCD of "
                        + number1 + " and "
                        + number2 + " is "
                        + computeGCD(number1, number2));
        }
        mMainActivity.println("Leaving run() " + threadString);
    }
```

```java
/**
 * Computes the greatest common divisor (GCD) of two numbers, which is
 * the largest positive integer that divides two integers without a
 * remainder. This implementation extends Thread and overrides its
 * run() hook method.
 */
public class GCDThread
    extends Thread {
    /**
     * A reference to the MainActivity.
     */
    private MainActivity mMainActivity;
    /**
     * Generate random numbers.
     */
    private Random mRandom;
    /**
     * Number of times to iterate, which is 100 million to ensure the
     * program runs for a while.
     */
    private final int MAX_ITERATIONS = 100000000;
    /**
     * Number of times to iterate before calling print, which is 10
     * million to ensure the program runs for a while.
     */
    private final int MAX_PRINT_ITERATIONS = 10000000;
    /**
     * Hook method that runs for MAX_ITERATIONS computing the GCD of
     * randomly generated numbers.
     */
    public void run() {
        final String threadString = " with thread id " + Thread.currentThread();
        mMainActivity.println("Entering run() " + threadString);
        // Generate random numbers and compute their GCDs.
        for (int i = 0; i < MAX_ITERATIONS; ++i) {
            // Generate two random numbers.
            int number1 = mRandom.nextInt();
            int number2 = mRandom.nextInt();
            // Print results every 10 million iterations.
            if ((i % MAX_PRINT_ITERATIONS) == 0)
                mMainActivity.println("In run() "
                        + threadString + " the GCD of "
                        + number1 + " and " + number2 + " is "
                        + computeGCD(number1, number2));
        }
        mMainActivity.println("Leaving run() " + threadString);
    }
```

See github.com/douglascraigschmidt/POSA/tree/master/ex/M3/GCD/Concurrent
• First, however, we’ll show how to build & run the app

```java
package vandy.mooc.gcd.activities;

import java.util.Random;

/**
 * Computes the greatest common divisor (GCD) of two positive integers
 * by using the Euclidean algorithm.
 * Result is the greatest positive divisor that both numbers can
 * be divided by without remainder. This implementation uses
 * a run() hook method. */

public class GCDThread extends Thread {
    /**
     * A reference to the MainActivity.
     */
    private MainActivity mainActivity;

    /**
     * Generate random numbers and GCD.
     */
```
End of Java Thread: Overview of the Case Study App