The Java FutureTask:

Evaluating Pros & Cons

Douglas G. Schmidt
id.schmidt@uanderhiit.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV



mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Evaluate the pros & cons of the Prime
Checker app implementation & FutureTask

2



Evaluating the
PrimeChecker App




Evaluating the PrimeChecker App

» The FutureTask version of the PrimeChecker app fixes a limitation with the
previous version

See earlier lessons on “Java ExecutorCompletionService”




Evaluating the PrimeChecker App

« The FutureTask version of the PrimeChecker app fixes a limitation with the
previous version, e.g.

« The Memoizer implementation no longer
depends on ConcurrentHashMap features
only available in Java 8 & beyond




Evaluating the PrimeChecker App

However, there is still a limitation

[starting primality computations

533238127 19 nox priea vith ameliost factar 17
657621655 is not prime with smallest factor
1311987041 is not prime with smallest factor 971

allest factor 11
00282196 i< not pr|mE with smallest factor 2
with smallest factor 2
in smalest focior 37
smallest 1t

ot prima with smallest factor 79
6 Is not prime with smallest factor 2

1679873625 is not prime nallest factor 3

133079501 is ot prime with smallest factor 11

1699167856 i not prime with smallest factor 2

563412821 is prime
Inished primality computations.




Evaluating the PrimeChecker App
« However, there is still a limitation, e.g.

« If the Memoizer is used for a long period
of time for a wide range of inputs it will
continue to grow & never clean itself up!

We fix this limitation in the lessons on the “Java ScheduledExecutorService'




Evaluating Java
FutureTask




Evaluating Java FutureTask

 Java 8's ConcurrentHashMap.computelfAbsent() reduces need for FutureTask

private Future<V> computeValue (K key) ({
FutureTask<V> ft = new FutureTask<>(() -> mF.apply(key))

Future<V> future = mCache.putlfAbsent (key, futureTask) ;

if (future '= null) return future;
else { futureTask.run(); return futureTask; } \\\\\
}

All threads block if value’s not been completed by first task, & after it's completed, the
blocked threads will unblock & any future threads calling the method won't block either

~




Evaluating Java FutureTask
 Java 8's ConcurrentHashMap.computelfAbsent() reduces need for FutureTask

AN

All threads block if value’s not been completed by first task, & after it's completed, the
blocked threads will unblock & any future threads calling the method won't block either

public V apply(final K key) { //////

return mCache.computelfAbsent (key, mFunction: :apply) ;

}

See ashkrit.blogspot.com/2014/12/what-is-new-in-java8-concurrenthashmap.html



http://ashkrit.blogspot.com/2014/12/what-is-new-in-java8-concurrenthashmap.html

Evaluating Java FutureTask

 Java 8's ConcurrentHashMap.computelfAbsent() reduces need for FutureTask

private Future<V> computeValue (K key) ({
FutureTask<V> ft = new FutureTask<>(() -> mF.apply(key))

Future<V> future = mCache.putlfAbsent (key, futureTask) ;
if (future '= null) return future;
} \

else { futureTask.run();, return futureTask;

¢ However, computelfAbsent() only works if you're using Java 8 or
— Java O | beyond - otherwise you'll need to understand/use Futurelask!!

public V apply(final K key) { //////

return mCache.computeIfAbsent (key, mFunction: :apply) ;

}

11



End of Java FutureTask:
Evaluating Pros & Cons

12



