Java FutureTask: Introduction

Douglas C. Schmidt
i.schmidt@uanderbiit.edu
www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software
Q 7 Integrated Systems
Vanderhilt University

Nashuille, Tennessee, USA



mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Understand how Java FutureTask provides
a cancellable asynchronous computation
that implements the Future & Runnable
interfaces

Class FutureTask<V>

java.lang.Object
java.util.concurrent.FutureTask<V=>

Type Parameters:

V' - The result type returned by this FutureTask's get
methods

All Implemented Interfaces:
Runnable, Future<V>, RunnableFuture<V>

public class FutureTask<V>
extends Object
implements RunnableFuture<Vs>

A cancellable asynchronous computation. This class provides a
base implementation of Future, with methods to start and cancel
a computation, query to see if the computation is complete, and
retrieve the result of the computation. The result can only be
retrieved when the computation has completed; the get methods
will block if the computation has not yet completed. Once the
computation has completed, the computation cannot be restarted
or cancelled (unless the computation is invoked using
runAndReset ()).

A FutureTask can be used to wrap a Callable or Runnable
object. Because FutureTask implements Runnable, a FutureTask
can be submitted to an Executor for execution.




Overview of
Java FutureTask




Overview of Java FutureTask

 Java FutureTask conveys the result from a
thread running an asynchronous computation
to thread(s) that want to process the result

Class FutureTask<V>

java.lang.Object
java.util.concurrent.FutureTask<V=>

Type Parameters:

V - The result type returned by this FutureTask's get
methods

All Implemented Interfaces:
Runnable, Future<V>, RunnableFuture<y>

public class FutureTask<V>
extends Object
implements RunnableFuture<V>

A cancellable asynchronous computation. This class provides a
base implementation of Future, with methods to start and cancel
a computation, query to see if the computation is complete, and
retrieve the result of the computation. The result can only be
retrieved when the computation has completed; the get methods
will block if the computation has not yet completed. Once the
computation has completed, the computation cannot be restarted
or cancelled (unless the computation is invoked using
runAndReset ()).

A FutureTask can be used to wrap a Callable or Runnable
object. Because FutureTask implements Runnable, a FutureTask
can be submitted to an Executor for execution.

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/FutureTask.html



https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/FutureTask.html

Overview of Java FutureTask

* FutureTask implements RunnableFuture
& provides several capabilities

<<Java Interface>>

& Runnable

@ run():void

A

/

<<Java Interface==
&% RunnableFuture<V>

@ run():void

T

<=<Java Interface==
i Future<Vv>

@ cancel(boolean):boolean
@ isCancelled():boolean

@ isDone():boolean

@ get()

@ get(long, TimeUnit)

<=<Java Class=>>
(9 FutureTask<V>

& FutureTask(Callable<V>)
& FutureTask(Runnable,V)
@ isCancelled():boolean

@ isDone():boolean

@ cancel(boolean):boolean
@ get()

@ get(long, TimeUnit)

@ run():void




Overview of Java FutureTask

» FutureTask implements RunnableFuture |<<Javanterface>> SR RS
) ren & Runnable & Future<V>
& provides several capabilities, e.g. — « cancellboolean) bodlean
* Start & cancel a computation b\ ;j & isCancelled():boolean
@ isDone():boolean
that can run asynchronously & get()
<<Java Interface>= @ get(long, TimeUnit)
&% RunnableFuture<V>
@ run():void

T

<<Java Class=>=>
(9 Future Task<V>

& FutureTask(Callable<V>)
& FutureTask(Runnable,V)
@ isCancelled():boolean

i = -
@ cancel(boolean):boolean

@ get()
@ get(long, TimeUnit)

FutureTask computations are often started/run by a Java ThreadPoolExecutor




Overview of Java FutureTask

* FutureTask implements RunnableFuture
& provides several capabilities, e.qg.

* Query to see if computation
completed or was cancelled

<<Java Interface>>
¢ Runnable

@ run():void

A

/

<<Java Interface==
&% RunnableFuture<V>

@ run():void

<=<Java Interface==
i Future<Vv>

@ cancel(boolean):boolean
@ isCancelled():boolean

@ isDone():boolean

@ get()

@ get(long, TimeUnit)

<<Java Class=>=>
(9 Future Task<V>

& FutureTask(Callable<V>)

@ isCancelled():boolean
@ isDone():boolean
@ get()

@ get(long, TimeUnit)
@ run():void




Overview of Java FutureTask

* FutureTask implements RunnableFuture
& provides several capabilities, e.qg.

» Get result of computation

<<Java Interface>>
¢ Runnable

@ run():void

A

/

<<Java Interface==
&% RunnableFuture<V>

@ run():void

T

<=<Java Interface==
i Future<Vv>

@ cancel(boolean):boolean
@ isCancelled():boolean

@ isDone():boolean

@ get()

@ get(long, TimeUnit)

<<Java Class=>=>
(9 Future Task<V>

& FutureTask(Callable<V>)
& FutureTask(Runnable,V)
@ isCancelled():boolean




End of Java FutureTask:
Introduction




