
Managing the Java Thread Lifecycle:

Java Thread Interrupts vs. 

Hardware/OS Interrupts

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software 

Integrated Systems 

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Know various ways to stop Java threads

• Stopping a thread with a volatile flag

• Stopping a thread with an interrupt 
request

• Learn the patterns of interrupting 
Java threads

• Understand differences between 
a Java thread interrupt & a
hardware/OS interrupt



3

Java Thread Interrupts vs. 
Hardware/OS Interrupts



4

• Interrupts at the hardware or OS
layers have several properties

See en.wikipedia.org/wiki/Interrupt & en.wikipedia.org/wiki/Unix_signal

Java Thread Interrupts vs Hardware/OS Interrupts

http://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Unix_signal


5

• Interrupts at the hardware or OS
layers have several properties

• Asynchronous 

• Can occur essentially anytime
& are independent of the
instruction currently running

See vujungle.blogspot.com/2010/12/differentiate-synchronous-and.html

Java Thread Interrupts vs Hardware/OS Interrupts

http://vujungle.blogspot.com/2010/12/differentiate-synchronous-and.html


6

• Interrupts at the hardware or OS
layers have several properties

• Asynchronous 

• Can occur essentially anytime
& are independent of the
instruction currently running

• A program needn’t test for 
them explicitly since they
occur “out-of-band”

Java Thread Interrupts vs Hardware/OS Interrupts



7

• Interrupts at the hardware or OS
layers have several properties

• Asynchronous 

• Preemptive

• Pause (& then later resume) the
execution of currently running
code without its cooperation

Java Thread Interrupts vs Hardware/OS Interrupts

See en.wikipedia.org/wiki/Preemption_(computing)

https://en.wikipedia.org/wiki/Preemption_(computing)


8

• This example shows how to 
catch the UNIX SIGINT signal

See www.thegeekstuff.com/2012/03/catch-signals-sample-c-code

Java Thread Interrupts vs Hardware/OS Interrupts
void sig_handler(int signo) { 

if (signo == SIGINT) 

printf("received SIGINT\n"); 

} 

int main(void) { 

if (signal(SIGINT, sig_handler) 

== SIG_ERR) 

printf("can't catch SIGINT\n"); 

for (;;)

sleep(10);

return 0; 

}

http://www.thegeekstuff.com/2012/03/catch-signals-sample-c-code


9

• This example shows how to 
catch the UNIX SIGINT signal

• It occurs asynchronously

Java Thread Interrupts vs Hardware/OS Interrupts
void sig_handler(int signo) { 

if (signo == SIGINT) 

printf("received SIGINT\n"); 

} 

int main(void) { 

if (signal(SIGINT, sig_handler) 

== SIG_ERR) 

printf("can't catch SIGINT\n"); 

for (;;)

sleep(10);

return 0; 

}

The SIGINT interrupt is 
typically generated by 

typing ^C in a UNIX shell



10

• This example shows how to 
catch the UNIX SIGINT signal

• It occurs asynchronously

• It preempts the current
instruction

Java Thread Interrupts vs Hardware/OS Interrupts
void sig_handler(int signo) { 

if (signo == SIGINT) 

printf("received SIGINT\n"); 

} 

int main(void) { 

if (signal(SIGINT, sig_handler) 

== SIG_ERR) 

printf("can't catch SIGINT\n"); 

for (;;)

sleep(10);

return 0; 

}



11

• This example shows how to 
catch the UNIX SIGINT signal

• It occurs asynchronously

• It preempts the current
instruction

• It needn’t be tested
for explicitly

Java Thread Interrupts vs Hardware/OS Interrupts
void sig_handler(int signo) { 

if (signo == SIGINT) 

printf("received SIGINT\n"); 

} 

int main(void) { 

if (signal(SIGINT, sig_handler) 

== SIG_ERR) 

printf("can't catch SIGINT\n"); 

for (;;)

sleep(10);

return 0; 

}



12

• Asynchronous & preemptive 
interrupt handling make it hard
to reason about programs

See en.wikipedia.org/wiki/Unix_signal#Risks

Java Thread Interrupts vs Hardware/OS Interrupts

https://en.wikipedia.org/wiki/Unix_signal#Risks


13

• Asynchronous & preemptive 
interrupt handling make it hard
to reason about programs, e.g.

• Race conditions

Java Thread Interrupts vs Hardware/OS Interrupts

See en.wikipedia.org/wiki/Race_condition#Software

Thread1

Thread2

Race conditions occur when a program 
depends on the sequence or timing 
of threads for it to operate properly

Shared State

https://en.wikipedia.org/wiki/Race_condition#Software


14

• Asynchronous & preemptive 
interrupt handling make it hard
to reason about programs, e.g.

• Race conditions

• Re-entrancy problems

Java Thread Interrupts vs Hardware/OS Interrupts

See en.wikipedia.org/wiki/Reentrancy_(computing)

A non-reentrant function cannot be 
interrupted in the middle of its execution 

& then safely called again before its 
previous invocations complete execution

https://en.wikipedia.org/wiki/Reentrancy_(computing)


15

• Asynchronous & preemptive 
interrupt handling make it hard
to reason about programs, e.g.

• Race conditions

• Re-entrancy problems

• Non-transparent restarts

Java Thread Interrupts vs Hardware/OS Interrupts

See en.wikipedia.org/wiki/PCLSRing#Unix-solution:_restart_on_request

e.g., an I/O operation returns the # of bytes transferred & it is 
up to the application to check this & manage its own resumption 

of the operation until all the bytes have been transferred

https://en.wikipedia.org/wiki/PCLSRing#Unix-solution:_restart_on_request


16

• Java thread interrupts differ
from hardware or operating 
system interrupts

Java Thread Interrupts vs Hardware/OS Interrupts

See docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.html


17

• Java thread interrupts differ
from hardware or operating 
system interrupts, e.g.

• Delivery is synchronous & 
non-preemptive rather than 
asynchronous & preemptive

• i.e., they don’t occur at an
arbitrary point & don’t pause
(& later resume) running code

Java Thread Interrupts vs Hardware/OS Interrupts



18

• Java thread interrupts differ
from hardware or operating 
system interrupts, e.g.

• Delivery is synchronous & 
non-preemptive rather than 
asynchronous & preemptive

• A program must test for 
them explicitly

void processNonBlocking() 

{

...

while (true) {

... // Do some long-running 

// computation

if (Thread.interrupted())

throw new 

InterruptedException();

...

Java Thread Interrupts vs Hardware/OS Interrupts



19

• Java thread interrupts differ
from hardware or operating 
system interrupts, e.g.

• Delivery is synchronous & 
non-preemptive rather than 
asynchronous & preemptive

• A program must test for 
them explicitly

• i.e., InterruptedException is 
(usually) thrown synchronously
& is handled synchronously

void processNonBlocking() 

{

...

while (true) {

... // Do some long-running 

// computation

if (Thread.interrupted())

throw new 

InterruptedException();

...

Java Thread Interrupts vs Hardware/OS Interrupts



20

• Java thread interrupts differ
from hardware or operating 
system interrupts, e.g.

• Delivery is synchronous & 
non-preemptive rather than 
asynchronous & preemptive

• A program must test for 
them explicitly

• Certain operations cannot
be interrupted

• e.g., blocking I/O calls that
aren’t “interruptable channels”

static class SleeperThread

extends Thread {

public void run() {

int c;

try {

c = System.in.read();

}

...

}

}

Java Thread Interrupts vs Hardware/OS Interrupts

See bugs.java.com/bugdatabase/view_bug.do?bug_id=4514257

http://bugs.java.com/bugdatabase/view_bug.do?bug_id=4514257


21

End of Managing the Java 
Thread Lifecycle: Java 
Thread Interrupts vs. 

Hardware/OS Interrupts


