Layered Architectures: Introduction

Douglas C. Schmidt <u>d.schmidt@vanderbilt.edu</u> www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software Integrated Systems

Vanderbilt University Nashville, Tennessee, USA

Learning Objectives in this Part of the Lesson

 Know what layered architectures are

• Layering is applied in many domains

See <u>en.wikipedia.org/wiki/Protocol_stack</u>

- Layering is applied in many domains, e.g.
 - Computer networking protocol stacks
 - Lower layers handle interactions with the hardware
 - e.g., GSM, DSL, & Ethernet

See <u>en.wikipedia.org/wiki/Link_layer</u> & <u>en.wikipedia.org/wiki/Physical_layer</u>

- Layering is applied in many domains, e.g.
 - Computer networking protocol stacks
 - Lower layers handle interactions with the hardware
 - Middle layers exchange packets across hosts & routers
 - e.g., IP, TCP, & UDP

See en.wikipedia.org/wiki/Internet_layer & en.wikipedia.org/wiki/Transport_layer

- Layering is applied in many domains, e.g.
 - Computer networking protocol stacks
 - Lower layers handle interactions with the hardware
 - Middle layers exchange packets across hosts & routers
 - Upper layers implement & interact with applications
 - e.g., PPTP, XDR, CDR, JSON

See <u>en.wikipedia.org/wiki/Session_layer</u> & <u>en.wikipedia.org/wiki/Presentation_layer</u>

- Layering is applied in many domains, e.g.
 - Computer networking protocol stacks
 - Lower layers handle interactions with the hardware
 - Middle layers exchange packets across hosts & routers
 - Upper layers implement & interact with applications
 - Applications (& middleware) mostly just deal with the upper layer(s)
 - e.g., FTP, TELNET, SMTP, & SNMP

See <u>en.wikipedia.org/wiki/Application_layer</u>

- Layering is applied in many domains, e.g.
 - Computer networking protocol stacks
 - Communication middleware in multi-tier enterprise IT systems

Provides services beyond the OS & protocol stacks to enable components in a distributed system to communicate & manage data

See en.wikipedia.org/wiki/Middleware (distributed_applications)

- Layering is applied in many domains, e.g.
 - Computer networking protocol stacks
 - Communication middleware in multi-tier enterprise IT systems
 - Lower layers provide portable APIs for accessing hardware & system resources
 - e.g., Linux, Windows, JVM, & ACE

- Layering is applied in many domains, e.g.
 - Computer networking protocol stacks
 - Communication middleware in multi-tier enterprise IT systems
 - Lower layers provide portable APIs for accessing hardware & system resources
 - Middle layers shield applications from network programming details
 - e.g., DDS, Web Services, MQTT, Spring, CORBA, etc.

- Layering is applied in many domains, e.g.
 - Computer networking protocol stacks
 - Communication middleware in multi-tier enterprise IT systems
 - Lower layers provide portable APIs for accessing hardware & system resources
 - Middle layers shield applications from network programming details
 - Upper layers enable domain-specific reuse of capabilities
 - e.g., MD-PnP, IIC, & FACE

- Layering is applied in many domains, e.g.
 - Computer networking protocol stacks
 - Communication middleware in multi-tier enterprise IT systems
 - Lower layers provide portable APIs for accessing hardware & system resources
 - Middle layers shield applications from network programming details
 - Upper layers enable domain-specific reuse of capabilities
 - Applications may deal w/multiple layers

End of Layered Architectures: Introduction