Java Barrier Synchronizers: Usage Considerations

Douglas C. Schmidt

<u>d.schmidt@vanderbilt.edu</u>

www.dre.vanderbilt.edu/~schmidt

Institute for Software Integrated Systems Vanderbilt University Nashville, Tennessee, USA

Learning Objectives in this Lesson

 Appreciate Java barrier synchronizer usage considerations

• Java's barrier synchronizers can be used for several purposes

See <u>stackoverflow.com/questions/6830904/java-tutorials</u> -explanations-of-jsr166y-phaser/6831171#6831171

- Java's barrier synchronizers can be used for several purposes
 - CountDownLatch focuses on actions

- Java's barrier synchronizers can be used for several purposes
 - CountDownLatch focuses on actions
 - It can be used an on/off latch for an entry barrier

- Java's barrier synchronizers can be used for several purposes
 - CountDownLatch focuses on actions
 - It can be used an on/off latch for an entry barrier

e.g., all video rendering threads invoking await() block at the latch until the main thread invokes countDown()

- Java's barrier synchronizers can be used for several purposes
 - CountDownLatch focuses on actions
 - It can be used an on/off latch for an entry barrier
 - It can also be used for more sophisticated exit barrier use cases

- Java's barrier synchronizers can be used for several purposes
 - CountDownLatch focuses on actions
 - It can be used an on/off latch for an entry barrier
 - It can also be used for more sophisticated exit barrier use cases, e.g.
 - 1 thread waits until N threads have completed an action

e.g., the main thread waits until the worker threads are finished rendering the video

- Java's barrier synchronizers can be used for several purposes
 - CountDownLatch focuses on actions
 - It can be used an on/off latch for an entry barrier
 - It can also be used for more sophisticated exit barrier use cases, e.g.
 - 1 thread waits until N threads have completed an action
 - 1 thread waits until an action has completed N times, irrespective of which thread(s) were responsible

- Java's barrier synchronizers can be used for several purposes
 - CountDownLatch focuses on actions
 - It can be used an on/off latch for an entry barrier
 - It can also be used for more sophisticated exit barrier use cases
 - Most appropriate/optimized for relatively simple use cases

• Java's barrier synchronizers can be used for several purposes

CountDownLatch focuses on actions

CyclicBarrier focuses on threads

- Java's barrier synchronizers can be used for several purposes
 - CountDownLatch focuses on actions
 - CyclicBarrier focuses on threads
 - It enables a set of threads to all wait for each other to reach a common barrier point

- Java's barrier synchronizers can be used for several purposes
 - CountDownLatch focuses on actions
 - CyclicBarrier focuses on threads
 - It enables a set of threads to all wait for each other to reach a common barrier point

e.g., a barrier can be used to wait for one or more algorithm iterations to finish before deciding to move on to the next cycle

- Java's barrier synchronizers can be used for several purposes
 - CountDownLatch focuses on actions
 - CyclicBarrier focuses on threads
 - It enables a set of threads to all wait for each other to reach a common barrier point
 - It requires a fixed # of threads

- Java's barrier synchronizers can be used for several purposes
 - CountDownLatch focuses on actions
 - CyclicBarrier focuses on threads
 - It enables a set of threads to all wait for each other to reach a common barrier point
 - It requires a fixed # of threads
 - This may be overly limited

- Java's barrier synchronizers can be used for several purposes
 - CountDownLatch focuses on actions
 - CyclicBarrier focuses on threads
 - Phaser focuses on a variable (or fixed) # of threads
 - It enables threads to wait for each other to complete processing in cycles

- Java's barrier synchronizers can be used for several purposes
 - CountDownLatch focuses on actions
 - CyclicBarrier focuses on threads
 - Phaser focuses on a variable (or fixed) # of threads
 - It enables threads to wait for each other to complete processing in cycles

Using Phasers for a fixed # of threads is typically overkill!

- Java's barrier synchronizers can be used for several purposes
 - CountDownLatch focuses on actions
 - CyclicBarrier focuses on threads
 - Phaser focuses on a variable (or fixed) # of threads
 - It enables threads to wait for each other to complete processing in cycles
 - It's more flexible than the two other types of Java barrier synchronizers

- Java's barrier synchronizers can be used for several purposes
 - CountDownLatch focuses on actions
 - CyclicBarrier focuses on threads
 - Phaser focuses on a variable (or fixed) # of threads
 - It enables threads to wait for each other to complete processing in cycles
 - It's more flexible than the two other types of Java barrier synchronizers
 - However, they are are also more complex to program

End of Java Barrier Synchronizers: Usage Considerations