Java Phaser-
Structure & Functionality

Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderhilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Understand the structure & functionality
of the Java Phaser barrier synchronizer

Class Phaser

java.lang.Object
java.util.concurrent.Phaser

public class Phaser
extends Object

A reusable synchronization barrier, similar in
functionality to CyclicBarrier and
CountDownLatch but supporting more flexible
usage.

Registration. Unlike the case for other barriers,
the number of parties registered to synchronize
on a phaser may vary over time. Tasks may be
registered at any time (using methods
register(), bulkRegister(int), or forms of
constructors establishing initial numbers of
parties), and optionally deregistered upon any
arrival (using arriveAndDeregister()). As is the
case with most basic synchronization constructs,
registration and deregistration affect only internal
counts; they do not establish any further internal
bookkeeping, so tasks cannot query whether they
are registered. (However, you can introduce such
bookkeeping by subclassing this class.)

Overview of
Java Phaser

Overview of Java Phaser

« Implements yet another Java barrier public class Phaser {
synchronizer “e

Class Phaser

java.lang.Object
java.util.concurrent.Phaser

public class Phaser
extends Object

A reusable synchronization barrier, similar in functionality to CyclicBarrier and CountDownlLatch but supporting more flexible usage.

Registration. Unlike the case for other barriers, the number of parties registered to synchronize on a phaser may vary over time. Tasks
may be registered at any time (using methods register(), bulkRegister(int), or forms of constructors establishing initial numbers of
parties), and optionally deregistered upon any arrival (using arriveAndDeregister()). As is the case with most basic synchronization
constructs, registration and deregistration affect only internal counts; they do not establish any further internal bookkeeping, so tasks
cannot query whether they are registered. (However, you can introduce such bookkeeping by subclassing this class.)

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Phaser.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Phaser.html

Overview of Java Phaser

Implements yet another Java barrier public class Phaser ({
synchronizer

» Allows a variable (or fixed) # of threads e,

to wait for all operations performed in other | .,g-.-.»-_.m— B
threads to complete before proceeding H i ijl ==

l

S

t' g',lfl

Class Phaser

java.lang.Object
java.util.concurrent.Phaser

public class Phaser
extends Object

A reusable synchronization barrier, similar in functionality to CyclicBarrier and CountDownlLatch but supporting more flexible usage.

Registration. Unlike the case for other barriers, the number of parties registered to synchronize on a phaser may vary over time. Tasks
may be registered at any time (using methods register(), bulkRegister(int), or forms of constructors establishing initial numbers of
parties), and optionally deregistered upon any arrival (using arriveAndDeregister()). As is the case with most basic synchronization
constructs, registration and deregistration affect only internal counts; they do not establish any further internal bookkeeping, so tasks
cannot query whether they are registered. (However, you can introduce such bookkeeping by subclassing this class.)

One human known use is different work-crews with
different #’s of workers coordinating to build a house

Overview of Java Phaser

« Implements yet another Java barrier public class Phaser {
synchronizer “e

7\

« Well-suited for variable-size “cyclic”, “entry”,
and/or “exit” barriers

Class Phaser

java.lang.Object
java.util.concurrent.Phaser

public class Phaser
extends Object

A reusable synchronization barrier, similar in functionality to CyclicBarrier and CountDownlLatch but supporting more flexible usage.

Registration. Unlike the case for other barriers, the number of parties registered to synchronize on a phaser may vary over time. Tasks
may be registered at any time (using methods register(), bulkRegister(int), or forms of constructors establishing initial numbers of
parties), and optionally deregistered upon any arrival (using arriveAndDeregister()). As is the case with most basic synchronization
constructs, registration and deregistration affect only internal counts; they do not establish any further internal bookkeeping, so tasks
cannot query whether they are registered. (However, you can introduce such bookkeeping by subclassing this class.)

6

Overview of Java Phaser

Implements yet another Java barrier public class Phaser {
synchronizer “e

of parties can vary dynamically

Class Phaser

java.lang.Object

java.util.lconcurrent.Phaser O V E R K I L L

Why have one, when you can have 2007?

public class Phaser
extends Object

A reusable synchronization barrier, similar in functionality to CyclicBarrier and CountDownlLatch but supporting more flexible usage.

Registration. Unlike the case for other barriers, the number of parties registered to synchronize on a phaser may vary over time. Tasks
may be registered at any time (using methods register(), bulkRegister(int), or forms of constructors establishing initial numbers of
parties), and optionally deregistered upon any arrival (using arriveAndDeregister()). As is the case with most basic synchronization
constructs, registration and deregistration affect only internal counts; they do not establish any further internal bookkeeping, so tasks
cannot query whether they are registered. (However, you can introduce such bookkeeping by subclassing this class.)

A Phaser may be overkill for fixed-sized barriers..

Overview of Java Phaser

« Implements yet another Java barrier public class Phaser {
synchronizer “e

Does not implement
an interface

Class Phaser

java.lang.Object
java.util.concurrent.Phaser

public class Phaser
extends Object

A reusable synchronization barrier, similar in functionality to CyclicBarrier and CountDownlLatch but supporting more flexible usage.

Registration. Unlike the case for other barriers, the number of parties registered to synchronize on a phaser may vary over time. Tasks
may be registered at any time (using methods register(), bulkRegister(int), or forms of constructors establishing initial numbers of
parties), and optionally deregistered upon any arrival (using arriveAndDeregister()). As is the case with most basic synchronization
constructs, registration and deregistration affect only internal counts; they do not establish any further internal bookkeeping, so tasks
cannot query whether they are registered. (However, you can introduce such bookkeeping by subclassing this class.)

8

Overview of Java Phaser

« Does not apply the Bridge pattern public class Phaser {

Phaser SyREhronizer

operation(

g

'| imp.operationl

JA\

Sync NonFairSync

RefinedAbstractid

operationlmp() operationimp()

See share/classes/java/util/concurrent/Phaser.java

share/classes/java/util/concurrent/Phaser.java

Overview of Java Phaser

» Does not apply the Bridge pattern

* Nor does it use the Abstract
QueuedSynchronizer framework

Phaser

public class Phaser {

operation()

JA\

RefinedAbstractid

'| imp.operationl

Sync

NonFairSync

operationlmp()

operationimp()

10

Overview of Java Phaser

« Instead, it defines a # of fields that public class Phaser {
implement a phaser private volatile long state;

See src/share/classes/java/util/concurrent/Phaser.java

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/concurrent/Phaser.java

Overview of Java Phaser

« Instead, it defines a # of fields that public class Phaser {
implement a phaser private volatile long state;

« Primary state representation,
holding four bit-fields

See en.wikipedia.org/wiki/Bit field

https://en.wikipedia.org/wiki/Bit_field

Overview of Java Phaser

« Instead, it defines a # of fields that public class Phaser {
implement a phaser private volatile long state;

« Primary state representation,
holding four bit-fields:

e Unarrived

 the # of parties yet to
hit barrier (bits 0-15)

13

Overview of Java Phaser

« Instead, it defines a # of fields that public class Phaser {
implement a phaser private volatile long state;

« Primary state representation,
holding four bit-fields:

o Parties

« the # of parties to wait
for before advancing to the
next phase (bits 16-31)

14

Overview of Java Phaser

« Instead, it defines a # of fields that public class Phaser {
implement a phaser private volatile long state;

« Primary state representation,
holding four bit-fields:

e Phase

« the generation of the barrier
(bits 32-62)

15

Overview of Java Phaser

« Instead, it defines a # of fields that public class Phaser {
implement a phaser private volatile long state;

« Primary state representation,
holding four bit-fields:

« Jerminated
« set if barrier is terminated (bit 63 / sign)

16

Overview of Java Phaser

« Instead, it defines a # of fields that public class Phaser {
implement a phaser private volatile long state;
« Primary state representation,

holding four bit-fields:
o Unarrived To efficiently maintain atomicity, these
: lues are packed into a single (atomic)
. the # of parties yet to va . . .
hit barrier (bits 0-15) long that is updated via CAS operations
« Parties
« the # of parties to wait
(bits 16-31)
« Phase
- the generation of the barrier
(bits 32-62)

« Terminated
« set if barrier is terminated (bit 63 / sign)

17

End of Java Phaser:
Structure & Functionality

18

Discussion Questions

1. What of the following are benefit of the Java Phaser
over the CyclicBarrier?

a. It supports fixed-size "cyclic” & “entry” and/or
‘exit” barriers who # of parties match the # of
threads

b. It supports variable-size "cyclic” & “entry” and/or
‘exit” barriers whose # of parties can vary
dynamically

C. It uses the AbstractQueuedSynchronizer framework
to enhance reuse

d. They provide better support for fixed-sized # of
parties

19

