
Java CyclicBarrier:

Key Methods

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

• Understand the structure & functionality of
Java CyclicBarrier

• Recognize the key methods in the Java
CyclicBarrier

Learning Objectives in this Part of the Lesson

3

Key Methods in
Java CyclicBarrier

4

Overview of Java CyclicBarrier
• CyclicBarrier has a very simple API

• i.e., only a handful of methods are
commonly used

5

• Constructor initializes the object to
“trip” when the given # of parties
wait on it

Overview of Java CyclicBarrier
public class CyclicBarrier {

...

public CyclicBarrier

(int parties) {

}

public CyclicBarrier

(int parties,

Runnable barrierAction) {

...

}

...

6

• Constructor initializes the object to
“trip” when the given # of parties
wait on it

Overview of Java CyclicBarrier
public class CyclicBarrier {

...

public CyclicBarrier

(int parties) {

}

public CyclicBarrier

(int parties,

Runnable barrierAction) {

...

}

...

“Parties” == “Threads”

CyclicBarrier requires a fixed # of threads that is identical to the # of parties..

7

• Constructor initializes the object to
“trip” when the given # of parties
wait on it

• Optionally given a barrier action
to execute when barrier’s tripped

Overview of Java CyclicBarrier
public class CyclicBarrier {

...

public CyclicBarrier

(int parties) {

}

public CyclicBarrier

(int parties,

Runnable barrierAction) {

...

}

...

8

• Constructor initializes the object to
“trip” when the given # of parties
wait on it

• Optionally given a barrier action
to execute when barrier’s tripped

• Performed by the last thread
entering the barrier

Overview of Java CyclicBarrier
public class CyclicBarrier {

...

public CyclicBarrier

(int parties) {

}

public CyclicBarrier

(int parties,

Runnable barrierAction) {

...

}...

Parties are suspended when barrier
action is run to avoid race conditions

9

• Constructor initializes the object to
“trip” when the given # of parties
wait on it

• Optionally given a barrier action
to execute when barrier’s tripped

• Performed by the last thread
entering the barrier

• Useful for updating any mutable
shared state before any parties
continue with their processing

Overview of Java CyclicBarrier
public class CyclicBarrier {

...

public CyclicBarrier

(int parties) {

}

public CyclicBarrier

(int parties,

Runnable barrierAction) {

...

}...

10

• Constructor initializes the object to
“trip” when the given # of parties
wait on it

• Optionally given a barrier action
to execute when barrier’s tripped

• Performed by the last thread
entering the barrier

• Useful for updating any mutable
shared state before any parties
continue with their processing

• The barrier’s count is automatically
reset to initial # of parties after
the barrier is tripped

Overview of Java CyclicBarrier
public class CyclicBarrier {

...

public CyclicBarrier

(int parties) {

}

public CyclicBarrier

(int parties,

Runnable barrierAction) {

...

}...

11

• Key methods block until all parties
wait on the barrier & then reset it
automatically after it’s tripped

Overview of Java CyclicBarrier
public class CyclicBarrier {

...

public int await() { ... }

public int await(long timeout,

TimeUnit unit)

{ ... }

Threads calling await() decide whether to continue to the next cycle or not

12

• Key methods block until all parties
wait on the barrier & then reset it
automatically after it’s tripped

• Block until all parties arrive &
barrier resets

• Unless the thread is interrupted

Overview of Java CyclicBarrier
public class CyclicBarrier {

...

public int await() { ... }

...

13

• Key methods block until all parties
wait on the barrier & then reset it
automatically after it’s tripped

• Block until all parties arrive &
barrier resets

• Unless the thread is interrupted

Overview of Java CyclicBarrier
public class CyclicBarrier {

...

public int await() { ... }

...

Returns arrival index of the thread at the barrier:

if (barrier.await() == 0) {

// log completion of this iteration

}

Can be used in lieu of barrier action if parties need not be suspended when run

14

• Key methods block until all parties
wait on the barrier & then reset it
automatically after it’s tripped

• Block until all parties arrive &
barrier resets

• Unless the thread is interrupted

• Unless the timeout elapses

Overview of Java CyclicBarrier
public class CyclicBarrier {

...

public int await() { ... }

public int await(long timeout,

TimeUnit unit)

{ ... }

...

15

• Key methods block until all parties
wait on the barrier & then reset it
automatically after it’s tripped

• Block until all parties arrive &
barrier resets

Overview of Java CyclicBarrier
public class CyclicBarrier {

...

public int await() { ... }

public int await(long timeout,

TimeUnit unit)

{ ... }

...

There is no “non-interruptible” version of await()

16

• It’s possible to manually reset a
cyclic barrier to its initial state

Overview of Java CyclicBarrier
public class CyclicBarrier {

...

public void reset() { ... }

...

If any parties are waiting at the barrier, they will return via
a BrokenBarrierException rather than the “normal” return

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/BrokenBarrierException.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/BrokenBarrierException.html

17

End of Java CyclicBarrier:
Key Methods

