
Java CountDownLatch:

Example Application

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

• Understand the structure & functionality of Java CountDownLatch

• Recognize the key methods in Java CountDownLatch

• Know how to program with Java CountDownLatch in practice

Learning Objectives in this Part of the Lesson

class GCDCountDownLatchWorker implements Runnable {

private final CountDownLatch mEntryBarrier;

private final CountDownLatch mExitBarrier;

...

GCDCountDownLatchWorker(CountDownLatch entryBarrier,

CountDownLatch exitBarrier, ...) {

mEntryBarrier = entryBarrier; mExitBarrier = exitBarrier;

...

}

public void run() {

...

mEntryBarrier.await();

runTest();

mExitBarrier.countDown(); ...

3

Overview of the GCD App

4

• This Android app uses two CountDownLatch objects
to coordinate the concurrent benchmarking of four
Greatest Common Divisor (GCD) algorithms

Overview of the GCD App

See github.com/douglascraigschmidt/POSA/tree/master/ex/M3/GCD/CountDownLatch

https://github.com/douglascraigschmidt/POSA/tree/master/ex/M3/GCD/CountDownLatch

5

• This Android app uses two CountDownLatch objects
to coordinate the concurrent benchmarking of four
Greatest Common Divisor (GCD) algorithms

• GCD computes the largest positive integer
that is a divisor of two numbers

• e.g., the GCD of 8 & 12 = 4

Overview of the GCD App

See en.wikipedia.org/wiki/Greatest_common_divisor

https://en.wikipedia.org/wiki/Greatest_common_divisor

6

• This Android app uses two CountDownLatch objects
to coordinate the concurrent benchmarking of four
Greatest Common Divisor (GCD) algorithms

• GCD computes the largest positive integer
that is a divisor of two numbers

• Four GCD algorithms are tested

Overview of the GCD App

7

• This Android app uses two CountDownLatch objects
to coordinate the concurrent benchmarking of four
Greatest Common Divisor (GCD) algorithms

• GCD computes the largest positive integer
that is a divisor of two numbers

• Four GCD algorithms are tested

• The gcd() method defined by BigInteger

Overview of the GCD App

See docs.oracle.com/javase/8/docs/api/java/math/BigInteger.html#gcd

https://docs.oracle.com/javase/8/docs/api/java/math/BigInteger.html#gcd-java.math.BigInteger-

8

• This Android app uses two CountDownLatch objects
to coordinate the concurrent benchmarking of four
Greatest Common Divisor (GCD) algorithms

• GCD computes the largest positive integer
that is a divisor of two numbers

• Four GCD algorithms are tested

• The gcd() method defined by BigInteger

• An iterative Euclid algorithm

Overview of the GCD App

See en.wikipedia.org/wiki/Euclidean_algorithm

https://en.wikipedia.org/wiki/Euclidean_algorithm

9

• This Android app uses two CountDownLatch objects
to coordinate the concurrent benchmarking of four
Greatest Common Divisor (GCD) algorithms

• GCD computes the largest positive integer
that is a divisor of two numbers

• Four GCD algorithms are tested

• The gcd() method defined by BigInteger

• An iterative Euclid algorithm

• A recursive Euclid algorithm

Overview of the GCD App

See codedost.com/java/methods-and-recursion-in-java/java-
program-to-find-gcd-hcf-using-euclidean-algorithm-using-recursion

https://codedost.com/java/methods-and-recursion-in-java/java-program-to-find-gcd-hcf-using-euclidean-algorithm-using-recursion/

10

• This Android app uses two CountDownLatch objects
to coordinate the concurrent benchmarking of four
Greatest Common Divisor (GCD) algorithms

• GCD computes the largest positive integer
that is a divisor of two numbers

• Four GCD algorithms are tested

• The gcd() method defined by BigInteger

• An iterative Euclid algorithm

• A recursive Euclid algorithm

• A complex GCD algorithm that uses
binary arithmetic

Overview of the GCD App

See en.wikipedia.org/wiki/Binary_GCD_algorithm

https://en.wikipedia.org/wiki/Binary_GCD_algorithm

11

• This Android app uses two CountDownLatch objects
to coordinate the concurrent benchmarking of four
Greatest Common Divisor (GCD) algorithms

• GCD computes the largest positive integer
that is a divisor of two numbers

• Four GCD algorithms are tested

• The gcd() method defined by BigInteger

• An iterative Euclid algorithm

• A recursive Euclid algorithm

• A complex GCD algorithm that uses
binary arithmetic

Overview of the GCD App

However, the details of these algorithms are not important for our discussion

12

GCDCountDownLatchTest
Class Walkthrough

13

GCDCountDownLatchTest Class Walkthrough

class GCDCountDownLatchTest {

@Test public void testGCDCountDownLatchTester() {

...

List<GCDTuple> gcdTests = makeGCDTuples();

CountDownLatch entryBarrier = new CountDownLatch(1);

CountDownLatch exitBarrier =

new CountDownLatch(gcdTests.size());

gcdTests.forEach(gcdTest -> new Thread

(new GCDCountDownLatchWorker

(entryBarrier, exitBarrier, gcdTuple, this)).start());

System.out.println("Starting tests");

entryBarrier.countDown();

System.out.println("Waiting for results");

exitBarrier.await();

System.out.println("All tests done"); ...

• Create worker threads that use entry & exit barrier CountDownLatch objects

See GCD/CountDownLatch/app/src/test/java/edu/
vandy/gcdtesttask/GCDCyclicBarrierTest.java

https://github.com/douglascraigschmidt/POSA/blob/master/ex/M3/GCD/CountDownLatch/app/src/test/java/edu/vandy/gcdtesttask/GCDCyclicBarrierTest.java

14

class GCDCountDownLatchTest {

@Test public void testGCDCountDownLatchTester() {

...

List<GCDTuple> gcdTests = makeGCDTuples();

CountDownLatch entryBarrier = new CountDownLatch(1);

CountDownLatch exitBarrier =

new CountDownLatch(gcdTests.size());

gcdTests.forEach(gcdTest -> new Thread

(new GCDCountDownLatchWorker

(entryBarrier, exitBarrier, gcdTuple, this)).start());

System.out.println("Starting tests");

entryBarrier.countDown();

System.out.println("Waiting for results");

exitBarrier.await();

System.out.println("All tests done"); ...

• Create worker threads that use entry & exit barrier CountDownLatch objects

Entry point into test

GCDCountDownLatchTest Class Walkthrough

15

class GCDCountDownLatchTest {

@Test public void testGCDCountDownLatchTester() {

...

List<GCDTuple> gcdTests = makeGCDTuples();

CountDownLatch entryBarrier = new CountDownLatch(1);

CountDownLatch exitBarrier =

new CountDownLatch(gcdTests.size());

gcdTests.forEach(gcdTest -> new Thread

(new GCDCountDownLatchWorker

(entryBarrier, exitBarrier, gcdTuple, this)).start());

System.out.println("Starting tests");

entryBarrier.countDown();

System.out.println("Waiting for results");

exitBarrier.await();

System.out.println("All tests done"); ...

• Create worker threads that use entry & exit barrier CountDownLatch objects

Initialize all the
GCD algorithms

GCDCountDownLatchTest Class Walkthrough

16

class GCDCountDownLatchTest {

@Test public void testGCDCountDownLatchTester() {

...

List<GCDTuple> gcdTests = makeGCDTuples();

CountDownLatch entryBarrier = new CountDownLatch(1);

CountDownLatch exitBarrier =

new CountDownLatch(gcdTests.size());

gcdTests.forEach(gcdTest -> new Thread

(new GCDCountDownLatchWorker

(entryBarrier, exitBarrier, gcdTuple, this)).start());

System.out.println("Starting tests");

entryBarrier.countDown();

System.out.println("Waiting for results");

exitBarrier.await();

System.out.println("All tests done"); ...

• Create worker threads that use entry & exit barrier CountDownLatch objects

Create the
entry barrier

GCDCountDownLatchTest Class Walkthrough

17

class GCDCountDownLatchTest {

@Test public void testGCDCountDownLatchTester() {

...

List<GCDTuple> gcdTests = makeGCDTuples();

CountDownLatch entryBarrier = new CountDownLatch(1);

CountDownLatch exitBarrier =

new CountDownLatch(gcdTests.size());

gcdTests.forEach(gcdTest -> new Thread

(new GCDCountDownLatchWorker

(entryBarrier, exitBarrier, gcdTuple, this)).start());

System.out.println("Starting tests");

entryBarrier.countDown();

System.out.println("Waiting for results");

exitBarrier.await();

System.out.println("All tests done"); ...

• Create worker threads that use entry & exit barrier CountDownLatch objects

Create the
exit barrier

GCDCountDownLatchTest Class Walkthrough

18

class GCDCountDownLatchTest {

@Test public void testGCDCountDownLatchTester() {

...

List<GCDTuple> gcdTests = makeGCDTuples();

CountDownLatch entryBarrier = new CountDownLatch(1);

CountDownLatch exitBarrier =

new CountDownLatch(gcdTests.size());

gcdTests.forEach(gcdTest -> new Thread

(new GCDCountDownLatchWorker

(entryBarrier, exitBarrier, gcdTuple, this)).start());

System.out.println("Starting tests");

entryBarrier.countDown();

System.out.println("Waiting for results");

exitBarrier.await();

System.out.println("All tests done"); ...

• Create worker threads that use entry & exit barrier CountDownLatch objects

Iterate through all
the GCD algorithms

GCDCountDownLatchTest Class Walkthrough

19

class GCDCountDownLatchTest {

@Test public void testGCDCountDownLatchTester() {

...

List<GCDTuple> gcdTests = makeGCDTuples();

CountDownLatch entryBarrier = new CountDownLatch(1);

CountDownLatch exitBarrier =

new CountDownLatch(gcdTests.size());

gcdTests.forEach(gcdTest -> new Thread

(new GCDCountDownLatchWorker

(entryBarrier, exitBarrier, gcdTuple, this)).start());

System.out.println("Starting tests");

entryBarrier.countDown();

System.out.println("Waiting for results");

exitBarrier.await();

System.out.println("All tests done"); ...

• Create worker threads that use entry & exit barrier CountDownLatch objects

Create/start worker
threads w/barriers

GCDCountDownLatchTest Class Walkthrough

20

class GCDCountDownLatchTest {

@Test public void testGCDCountDownLatchTester() {

...

List<GCDTuple> gcdTests = makeGCDTuples();

CountDownLatch entryBarrier = new CountDownLatch(1);

CountDownLatch exitBarrier =

new CountDownLatch(gcdTests.size());

gcdTests.forEach(gcdTest -> new Thread

(new GCDCountDownLatchWorker

(entryBarrier, exitBarrier, gcdTuple, this)).start());

System.out.println("Starting tests");

entryBarrier.countDown();

System.out.println("Waiting for results");

exitBarrier.await();

System.out.println("All tests done"); ...

• Create worker threads that use entry & exit barrier CountDownLatch objects

The worker threads
don’t start just yet

GCDCountDownLatchTest Class Walkthrough

21

• Create worker threads that use entry & exit barrier CountDownLatch objects

class GCDCountDownLatchTest {

@Test public void testGCDCountDownLatchTester() {

...

List<GCDTuple> gcdTests = makeGCDTuples();

CountDownLatch entryBarrier = new CountDownLatch(1);

CountDownLatch exitBarrier =

new CountDownLatch(gcdTests.size());

gcdTests.forEach(gcdTest -> new Thread

(new GCDCountDownLatchWorker

(entryBarrier, exitBarrier, gcdTuple, this)).start());

System.out.println("Starting tests");

entryBarrier.countDown();

System.out.println("Waiting for results");

exitBarrier.await();

System.out.println("All tests done"); ...

Let all worker threads proceed

The countDown() method is a “latch” that let’s all the worker threads start
running, but it doesn’t ensure all the worker threads start at the same time..

GCDCountDownLatchTest Class Walkthrough

22

class GCDCountDownLatchTest {

@Test public void testGCDCountDownLatchTester() {

...

List<GCDTuple> gcdTests = makeGCDTuples();

CountDownLatch entryBarrier = new CountDownLatch(1);

CountDownLatch exitBarrier =

new CountDownLatch(gcdTests.size());

gcdTests.forEach(gcdTest -> new Thread

(new GCDCountDownLatchWorker

(entryBarrier, exitBarrier, gcdTuple, this)).start());

System.out.println("Starting tests");

entryBarrier.countDown();

System.out.println("Waiting for results");

exitBarrier.await();

System.out.println("All tests done"); ...

• Create worker threads that use entry & exit barrier CountDownLatch objects

Wait for all to finish (exit barrier)

After await() returns for a CountDownLatch it can’t be reused/
reset without creating a new CountDownLatch instance

GCDCountDownLatchTest Class Walkthrough

23

GCDCountDownLatchWorker
Class Walkthrough

24

GCDCountDownLatchWorker Class Walkthrough

class GCDCountDownLatchWorker implements Runnable {

private final CountDownLatch mEntryBarrier;

private final CountDownLatch mExitBarrier;

...

GCDCountDownLatchWorker(CountDownLatch entryBarrier,

CountDownLatch exitBarrier, ...) {

mEntryBarrier = entryBarrier; mExitBarrier = exitBarrier;

...

}

public void run() {

...

mEntryBarrier.await();

runTest();

mExitBarrier.countDown();

...

• This class applies two entry & exit barrier CountDownLatch objects to
coordinate the benchmarking of a given GCD algorithm implementation

Define a worker that
runs in a thread

See GCD/CountDownLatch/app/src/main/java/edu/vandy/
gcdtesttask/presenter/GCDCountDownLatchWorker.java

https://github.com/douglascraigschmidt/POSA/blob/master/ex/M3/GCD/CountDownLatch/app/src/main/java/edu/vandy/gcdtesttask/presenter/GCDCountDownLatchWorker.java

25

class GCDCountDownLatchWorker implements Runnable {

private final CountDownLatch mEntryBarrier;

private final CountDownLatch mExitBarrier;

...

GCDCountDownLatchWorker(CountDownLatch entryBarrier,

CountDownLatch exitBarrier, ...) {

mEntryBarrier = entryBarrier; mExitBarrier = exitBarrier;

...

}

public void run() {

...

mEntryBarrier.await();

runTest();

mExitBarrier.countDown();

...

GCDCountDownLatchWorker Class Walkthrough
• This class applies two entry & exit barrier CountDownLatch objects to

coordinate the benchmarking of a given GCD algorithm implementation

Initialize barrier fields et al.

26

class GCDCountDownLatchWorker implements Runnable {

private final CountDownLatch mEntryBarrier;

private final CountDownLatch mExitBarrier;

...

GCDCountDownLatchWorker(CountDownLatch entryBarrier,

CountDownLatch exitBarrier, ...) {

mEntryBarrier = entryBarrier; mExitBarrier = exitBarrier;

...

}

public void run() {

...

mEntryBarrier.await();

runTest();

mExitBarrier.countDown();

...

GCDCountDownLatchWorker Class Walkthrough
• This class applies two entry & exit barrier CountDownLatch objects to

coordinate the benchmarking of a given GCD algorithm implementation

This hook method executes
after the thread is started

27

class GCDCountDownLatchWorker implements Runnable {

private final CountDownLatch mEntryBarrier;

private final CountDownLatch mExitBarrier;

...

GCDCountDownLatchWorker(CountDownLatch entryBarrier,

CountDownLatch exitBarrier, ...) {

mEntryBarrier = entryBarrier; mExitBarrier = exitBarrier;

...

}

public void run() {

...

mEntryBarrier.await();

runTest();

mExitBarrier.countDown();

...

GCDCountDownLatchWorker Class Walkthrough
• This class applies two entry & exit barrier CountDownLatch objects to

coordinate the benchmarking of a given GCD algorithm implementation

This entry barrier causes the worker thread
to wait until main thread is ready, though
worker threads may not start simultaneously

See the upcoming lesson on “Java CyclicBarrier” for a solution to this problem

28

class GCDCountDownLatchWorker implements Runnable {

private final CountDownLatch mEntryBarrier;

private final CountDownLatch mExitBarrier;

...

GCDCountDownLatchWorker(CountDownLatch entryBarrier,

CountDownLatch exitBarrier, ...) {

mEntryBarrier = entryBarrier; mExitBarrier = exitBarrier;

...

}

public void run() {

...

mEntryBarrier.await();

runTest();

mExitBarrier.countDown();

...

GCDCountDownLatchWorker Class Walkthrough
• This class applies two entry & exit barrier CountDownLatch objects to

coordinate the benchmarking of a given GCD algorithm implementation

Run the GCD algorithm associated with this object

29

class GCDCountDownLatchWorker implements Runnable {

private final CountDownLatch mEntryBarrier;

private final CountDownLatch mExitBarrier;

...

GCDCountDownLatchWorker(CountDownLatch entryBarrier,

CountDownLatch exitBarrier, ...) {

mEntryBarrier = entryBarrier; mExitBarrier = exitBarrier;

...

}

public void run() {

...

mEntryBarrier.await();

runTest();

mExitBarrier.countDown();

...

GCDCountDownLatchWorker Class Walkthrough
• This class applies two entry & exit barrier CountDownLatch objects to

coordinate the benchmarking of a given GCD algorithm implementation

Decrement the count, which
lets the main thread proceed
when the count reaches 0

30

End of CountDownLatch:
Example Application

