Barrier Synchronization: Introduction

Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software Integrated Systems
Vanderbilt University
Nashville, Tennessee, USA
Learning Objectives in this Part of the Lesson

• Understand what barrier synchronization is & know three different ways of using barrier synchronizers
Learning Objectives in this Part of the Lesson

- Understand what barrier synchronization is & know three different ways of using barrier synchronizers
- Note a human known use of barrier synchronization
Overview of Barrier Synchronization
Overview of Barrier Synchronization

• Earlier discussions of Java synchronizers have largely focused on classes that affect the behavior of individual threads

See earlier lesson on “Types of Java Synchronizer Capabilities”
Overview of Barrier Synchronization

• Earlier discussions of Java synchronizers have largely focused on classes that affect the behavior of individual threads, e.g.
• Atomic operations are actions that happen effectively all at once or not at all
Overview of Barrier Synchronization

- Earlier discussions of Java synchronizers have largely focused on classes that affect the behavior of individual threads, e.g.
  - Atomic operations are actions that happen effectively all at once or not at all
  - Mutual exclusion synchronizers allow concurrent access & updates to shared mutable data within critical sections

See earlier lessons on “Java ReentrantLock”, “Java Semaphore”, “Java ReentrantReadWriteLock”, “Java StampedLock”, & “Java Monitor Objects”
Overview of Barrier Synchronization

- Earlier discussions of Java synchronizers have largely focused on classes that affect the behavior of individual threads, e.g.
  - Atomic operations are actions that happen effectively all at once or not at all
  - Mutual exclusion synchronizers allow concurrent access & updates to shared mutable data within critical sections
  - Coordination synchronizers ensure that computations run properly
    - e.g., in the right order, at the right time, under the right conditions, etc.
Overview of Barrier Synchronization

- In contrast, a barrier is a synchronizer that ensures thread(s) must stop at a certain point & cannot proceed until all other thread(s) reach this barrier.

See [en.wikipedia.org/wiki/Barrier_(computer_science)](en.wikipedia.org/wiki/Barrier_(computer_science))
Overview of Barrier Synchronization

• Barriers can be used in three ways

We’ll use an video rendering engine as a running example in this part of the lesson
Overview of Barrier Synchronization

• Barriers can be used in three ways

A. Entry barrier

• e.g., keep concurrent computations from running until object(s) are fully initialized
Overview of Barrier Synchronization

- Barriers can be used in three ways

A. Entry barrier
- e.g., keep concurrent computations from running until object(s) are fully initialized

Main thread spawns some # of worker threads & then performs some time-consuming initialization of data structures
Overview of Barrier Synchronization

- Barriers can be used in three ways

A. **Entry barrier**
   - e.g., keep concurrent computations from running until object(s) are fully initialized

   - **The worker threads wait on the entry barrier until the main thread completes its initializations**
Overview of Barrier Synchronization

- Barriers can be used in three ways

A. **Entry barrier**
   - e.g., keep concurrent computations from running until object(s) are fully initialized

The main thread decrements the entry barrier to 0, thereby informing worker threads they can continue.
Overview of Barrier Synchronization

- Barriers can be used in three ways
  
  A. Entry barrier
  
  B. Exit barrier
    
    - e.g., don’t let a thread continue until a group of concurrent threads have finished their processing
Overview of Barrier Synchronization

- Barriers can be used in three ways

A. Entry barrier

B. Exit barrier

- e.g., don’t let a thread continue until a group of concurrent threads have finished their processing

The main thread waits on an exit barrier for all worker threads to finish
Overview of Barrier Synchronization

- Barriers can be used in three ways:
  - **A. Entry barrier**
  - **B. Exit barrier**
    - e.g., don’t let a thread continue until a group of concurrent threads have finished their processing
Barriers can be used in three ways:

A. Entry barrier

B. Exit barrier

- e.g., don’t let a thread continue until a group of concurrent threads have finished their processing

---

**Overview of Barrier Synchronization**

*Barrier count decrements when thread’s done*

Worker Threads

Main Thread

mConversion

DoneBarrier

---

18
Overview of Barrier Synchronization

- Barriers can be used in three ways
  
  **A. Entry barrier**
  
  **B. Exit barrier**
  - e.g., don’t let a thread continue until a group of concurrent threads have finished their processing
Overview of Barrier Synchronization

- Barriers can be used in three ways

A. Entry barrier

B. Exit barrier
- e.g., don’t let a thread continue until a group of concurrent threads have finished their processing

When the exit barrier count = 0 the main thread can now continue
Overview of Barrier Synchronization

- Barriers can be used in three ways

A. Entry barrier
B. Exit barrier
C. Cyclic barrier

- e.g., a group of threads all wait for each other to reach a certain point before advancing to the next cycle
Overview of Barrier Synchronization

• Barriers can be used in three ways

  A. Entry barrier
  B. Exit barrier
  C. Cyclic barrier

  • e.g., a group of threads all wait for each other to reach a certain point before advancing to the next cycle

A fixed- or variable-size pool of threads can run concurrently
Overview of Barrier Synchronization

- Barriers can be used in three ways
  A. Entry barrier
  B. Exit barrier
  C. Cyclic barrier

- e.g., a group of threads all wait for each other to reach a certain point before advancing to the next cycle

At the end of each cycle a decision is made about whether to continue or not
Human Known Uses of Barrier Synchronization
Human Known Uses of Barrier Synchronization

- A human known use is protocol used by a museum tour guide

See [en.wikipedia.org/wiki/Tour_guide](en.wikipedia.org/wiki/Tour_guide)
Human Known Uses of Barrier Synchronization

• A human known use is protocol used by a museum tour guide

A. Entry barrier

• Tourists wait outside museum until it opens or until a tour is schedule to begin
Human Known Uses of Barrier Synchronization

- A human known use is protocol used by a museum tour guide

A. Entry barrier

B. Exit barrier
  - The museum closes only after last group of tourists leave
A human known use is protocol used by a museum tour guide

A. Entry barrier
B. Exit barrier
C. Cyclic barrier

- Tour guide waits for all the tourists to finish exploring a room before continuing the tour in next room

Cyclic barriers can be used either as entry or exit barriers
Human Known Uses of Barrier Synchronization

- A human known use is protocol used by a museum tour guide
  
  A. Entry barrier
  B. Exit barrier
  C. Cyclic barrier

Barriers can be used for both fixed- & variable-sized number of tourists
End of Barrier Synchronization: Introduction