
Barrier Synchronization:

Introduction

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

• Understand what barrier synchronization is & know three different ways of
using barrier synchronizers

Learning Objectives in this Part of the Lesson

3

• Understand what barrier synchronization is & know three different ways of
using barrier synchronizers

• Note a human known use of barrier
synchronization

Learning Objectives in this Part of the Lesson

4

Overview of Barrier
Synchronization

5See earlier lesson on “Types of Java Synchronizer Capabilities”

• Earlier discussions of Java synchronizers have largely focused on classes
that affect the behavior of individual threads

Overview of Barrier Synchronization

6See earlier lessons on “Java Atomic Operations & Classes”

• Earlier discussions of Java synchronizers have largely focused on classes
that affect the behavior of individual threads, e.g.

• Atomic operations are actions that happen
effectively all at once or not at all

Overview of Barrier Synchronization

7
See earlier lessons on “Java ReentrantLock”, “Java Semaphore”, “Java

ReentrantReadWriteLock”, “Java StampedLock”, & “Java Monitor Objects”

• Earlier discussions of Java synchronizers have largely focused on classes
that affect the behavior of individual threads, e.g.

• Atomic operations are actions that happen
effectively all at once or not at all

• Mutual exclusion synchronizers allow
concurrent access & updates to shared
mutable data within critical sections

Overview of Barrier Synchronization

8See earlier lessons on “Java ConditionObject” & “Java Monitor Objects”

• Earlier discussions of Java synchronizers have largely focused on classes
that affect the behavior of individual threads, e.g.

• Atomic operations are actions that happen
effectively all at once or not at all

• Mutual exclusion synchronizers allow
concurrent access & updates to shared
mutable data within critical sections

• Coordination synchronizers ensure that
computations run properly

• e.g., in the right order, at the right
time, under the right conditions, etc.

Overview of Barrier Synchronization

9See en.wikipedia.org/wiki/Barrier_(computer_science)

• In contrast, a barrier is a synchronizer that ensures thread(s) must stop at a
certain point & cannot proceed until all other thread(s) reach this barrier

Overview of Barrier Synchronization

http://en.wikipedia.org/wiki/Barrier_(computer_science)

10

• Barriers can be used in three ways

Overview of Barrier Synchronization

We’ll use an video rendering engine as a
running example in this part of the lesson

11

• Barriers can be used in three ways

A. Entry barrier

• e.g., keep concurrent computations
from running until object(s) are
fully initialized

Overview of Barrier Synchronization

12

• Barriers can be used in three ways

A. Entry barrier

• e.g., keep concurrent computations
from running until object(s) are
fully initialized

Main
Thread

Worker
Threads

Main thread spawns some # of worker
threads & then performs some time-

consuming initialization of data structures

Overview of Barrier Synchronization

13

• Barriers can be used in three ways

A. Entry barrier

• e.g., keep concurrent computations
from running until object(s) are
fully initialized mInitialization

DoneBarrier1

Main
Thread

Worker
Threads

The worker threads wait on the
entry barrier until the main thread

completes its initializations

Overview of Barrier Synchronization

14

• Barriers can be used in three ways

A. Entry barrier

• e.g., keep concurrent computations
from running until object(s) are
fully initialized mInitialization

DoneBarrier0

Main
Thread

Worker
Threads

The main thread decrements the
entry barrier to 0, thereby informing
worker threads they can continue

Overview of Barrier Synchronization

15

• Barriers can be used in three ways

A. Entry barrier

B. Exit barrier

• e.g., don’t let a thread continue until
a group of concurrent threads have
finished their processing

Overview of Barrier Synchronization

16

• Barriers can be used in three ways

A. Entry barrier

B. Exit barrier

• e.g., don’t let a thread continue until
a group of concurrent threads have
finished their processing

mConversion
DoneBarrier4

Worker
Threads

Main
Thread

The main thread waits on an exit
barrier for all worker threads to finish

Overview of Barrier Synchronization

17

• Barriers can be used in three ways

A. Entry barrier

B. Exit barrier

• e.g., don’t let a thread continue until
a group of concurrent threads have
finished their processing

mConversion
DoneBarrier3

Worker
Threads

Main
Thread

Overview of Barrier Synchronization

Barrier count decrements when thread’s done

18

• Barriers can be used in three ways

A. Entry barrier

B. Exit barrier

• e.g., don’t let a thread continue until
a group of concurrent threads have
finished their processing

mConversion
DoneBarrier2

Worker
Threads

Main
Thread

Overview of Barrier Synchronization

Barrier count decrements when thread’s done

19

• Barriers can be used in three ways

A. Entry barrier

B. Exit barrier

• e.g., don’t let a thread continue until
a group of concurrent threads have
finished their processing

mConversion
DoneBarrier1

Worker
Threads

Main
Thread

Overview of Barrier Synchronization

Barrier count decrements when thread’s done

20

• Barriers can be used in three ways

A. Entry barrier

B. Exit barrier

• e.g., don’t let a thread continue until
a group of concurrent threads have
finished their processing

mConversion
DoneBarrier0

Main
Thread

When the exit barrier count = 0
the main thread can now continue

Overview of Barrier Synchronization

21

• Barriers can be used in three ways

A. Entry barrier

B. Exit barrier

C. Cyclic barrier

• e.g., a group of threads all wait for
each other to reach a certain point
before advancing to the next cycle

mCyclic
Barrier

Worker
Threads

Overview of Barrier Synchronization

22

• Barriers can be used in three ways

A. Entry barrier

B. Exit barrier

C. Cyclic barrier

• e.g., a group of threads all wait for
each other to reach a certain point
before advancing to the next cycle

mCyclic
Barrier

Worker
Threads

A fixed- or variable-size pool of
threads can run concurrently

Overview of Barrier Synchronization

23

• Barriers can be used in three ways

A. Entry barrier

B. Exit barrier

C. Cyclic barrier

• e.g., a group of threads all wait for
each other to reach a certain point
before advancing to the next cycle

mCyclic
Barrier

Worker
Threads

At the end of each cycle a decision is
made about whether to continue or not

Overview of Barrier Synchronization

24

Human Known Uses of
Barrier Synchronization

25

• A human known use is protocol
used by a museum tour guide

See en.wikipedia.org/wiki/Tour_guide

Human Known Uses of Barrier Synchronization

http://en.wikipedia.org/wiki/Tour_guide

26

• A human known use is protocol
used by a museum tour guide

A. Entry barrier

• Tourists wait outside museum
until it opens or until a tour is
schedule to begin

Human Known Uses of Barrier Synchronization

27

• A human known use is protocol
used by a museum tour guide

A. Entry barrier

B. Exit barrier

• The museum closes only after
last group of tourists leave

Human Known Uses of Barrier Synchronization

28

• A human known use is protocol
used by a museum tour guide

A. Entry barrier

B. Exit barrier

C. Cyclic barrier

• Tour guide waits for all the
tourists to finish exploring a
room before continuing the
tour in next room

Human Known Uses of Barrier Synchronization

Cyclic barriers can be used either as entry or exit barriers

29

• A human known use is protocol
used by a museum tour guide

A. Entry barrier

B. Exit barrier

C. Cyclic barrier

Human Known Uses of Barrier Synchronization

Barriers can be used for both fixed- & variable-sized number of tourists

30

End of Barrier
Synchronization: Introduction

