Evaluation of Concurrency & Parallelism Mechanisms in Java

Douglas C. Schmidt

<u>d.schmidt@vanderbilt.edu</u>

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software Integrated Systems

Vanderbilt University Nashville, Tennessee, USA

Learning Objectives in this Part of the Lesson

 Know which Java mechanism(s) to understand & apply

 Java's concurrency & parallelism mechanisms span multiple layers in the software stack

- Java's concurrency & parallelism mechanisms span multiple layers in the software stack
 - Choosing best mechanism(s) depend on various factors

 Developers of low-level classes & performance-sensitive apps may prefer shared object mechanisms

Package java.util.concurrent Description

Utility classes commonly useful in concurrent programming. This package includes a few small standardized extensible frameworks, as well as some classes that provide useful functionality and are otherwise tedious or difficult to implement. Here are brief descriptions of the main components. See also the java.util.concurrent.locks and java.util.concurrent.atomic packages.

Additional Application Frameworks

Concurrency/Parallelism Frameworks
Java Threads & Synchronizers

Execution Environment (JVM, Dalvik/ART, etc.)

System Libraries

Operating System Kernel

e.g., java.util.concurrent as per www.youtube.com/watch?v=sq0MX3fHkro

 \mathbf{C}

- Developers of low-level classes & performance-sensitive apps may prefer shared object mechanisms
 - **Pros**: Efficient & lightweight
 - **Cons**: Tedious & error-prone

Shared objects are often best used by infrastructure vs. app developers

 Framework developers may want **Applications** to use the Java message passing mechanisms **Additional Application Frameworks** Background_ Message **Concurrency/Parallelism Frameworks** Thread A → ≥ Queue **Java Threads & Synchronizers** Message **Execution Environment (JVM, Dalvik/ART, etc.)** Handler Message Runnable Message **System Libraries** Background_ Message Thread B Message \cup Handler **Operating System Kernel** Message Message **Executor** UI Thread (main thread) **AsyncTask**

e.g., Android AsyncTask/HaMeR frameworks or Java ExecutorCompetionService

- Framework developers may want to use the Java message passing mechanisms
 - **Pros**: Flexible & decoupled
 - **Cons**: Time/space overhead

May incur higher context switching, synchronization, & data movement overhead

 Mobile app developers may want to **Applications** program w/higher-level frameworks **Additional Application Frameworks Concurrency/Parallelism Frameworks** Java, **Java Threads & Synchronizers Execution Environment (JVM, Dalvik/ART, etc.) System Libraries** \cup **Operating System Kernel**

e.g., Java parallel streams & completable futures, RxJava, etc.

- Mobile app developers may want to program w/higher-level frameworks
 - **Pros**: Productivity & robustness
 - Cons: Time/space overhead
 & overly prescriptive

"Full stack" developers should understand concepts & mechanisms at each layer

End of Evaluation of Concurrency & Parallelism in Java