
Overview of Concurrent 

Programming in Java

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software 

Integrated Systems

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Understand the meaning of key 

concurrent programming concepts

• Recognize how these concepts 
are supported in Java

Each Java thread 
has its own stack, 

registers, etc.



3

An Overview of Concurrent 
Programming in Java



4

An Overview of Concurrent Programming in Java
• A Java thread is an object

See docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html


5

An Overview of Concurrent Programming in Java
• A Java thread is an object, e.g.

• It contains methods & fields

See blog.jamesdbloom.com/JVMInternals.html

Each Java thread 
has its own stack, 

registers, etc.

http://blog.jamesdbloom.com/JVMInternals.html


6

An Overview of Concurrent Programming in Java
• A Java thread is an object, e.g.

• It contains methods & fields

• It can also be in one of 
various “states”

See docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html


7

An Overview of Concurrent Programming in Java
• Concurrent Java threads interact via shared objects and/or message passing

See docs.oracle.com/javase/8/docs/api/?java/util/concurrent/package-summary.html

write()

read()

send()

recv()

read()

https://docs.oracle.com/javase/8/docs/api/?java/util/concurrent/package-summary.html


8

• Concurrent Java threads interact via shared objects and/or message passing

• Shared objects

• Synchronize concurrent operations on 
objects to ensure certain properties

An Overview of Concurrent Programming in Java

write()

read()

send()

read()

recv()

See en.wikipedia.org/wiki/Synchronization_(computer_science)

https://en.wikipedia.org/wiki/Synchronization_(computer_science)


9

• Concurrent Java threads interact via shared objects and/or message passing

• Shared objects

• Synchronize concurrent operations on 
objects to ensure certain properties, e.g.

• Mutual exclusion 

• Interactions between threads 
won’t corrupt shared mutable data

An Overview of Concurrent Programming in Java

write()

read()

send()

read()

recv()

See en.wikipedia.org/wiki/Monitor_(synchronization)#Mutual_exclusion

https://en.wikipedia.org/wiki/Monitor_(synchronization)#Mutual_exclusion


10

• Concurrent Java threads interact via shared objects and/or message passing

• Shared objects

• Synchronize concurrent operations on 
objects to ensure certain properties, e.g.

• Mutual exclusion 

• Coordination

• Operations occur in the right order, 
at the right time, & under the right 
conditions 

An Overview of Concurrent Programming in Java

write()

read()

send()

read()

recv()

See en.wikipedia.org/wiki/Monitor_(synchronization)#Condition_variables

https://en.wikipedia.org/wiki/Monitor_(synchronization)#Condition_variables


11

An Overview of Concurrent Programming in Java
• Concurrent Java threads interact via shared objects and/or message passing

• Shared objects

• Synchronize concurrent operations on 
objects to ensure certain properties 

• Examples of Java synchronizers:

• Synchronized statements/methods

• Reentrant locks & intrinsic locks

• Atomic operations

• Semaphores

• Condition objects

• “Compare-and-swap” (CAS)
operations in sun.misc.unsafe

See dzone.com/articles/the-java-synchronizers

write()

read()

send()

read()

recv()

https://dzone.com/articles/the-java-synchronizers


12

An Overview of Concurrent Programming in Java
• Concurrent Java threads interact via shared objects and/or message passing

• Shared objects

• Message passing

• Send message(s) from producer
thread(s) to consumer thread(s)
via a thread-safe queue

See en.wikipedia.org/wiki/Message_passing

write()

read()

read()

send()

recv()

https://en.wikipedia.org/wiki/Message_passing


13

An Overview of Concurrent Programming in Java
• Concurrent Java threads interact via shared objects and/or message passing

• Shared objects

• Message passing

• Send message(s) from producer
thread(s) to consumer thread(s)
via a thread-safe queue

• Examples of Java thread-safe queues

• Array & linked blocking queues

• Priority blocking queue

• Synchronous queue

• Concurrent linked queue

See docs.oracle.com/javase/tutorial/collections/implementations/queue.html

write()

read()

read()

send()

recv()

https://docs.oracle.com/javase/tutorial/collections/implementations/queue.html


14

An Overview of Concurrent 
Programming Hazards



15

• Java shared objects & message passing 
are designed to share resources safely 
& avoid concurrency hazards

An Overview of Concurrent Programming Hazards

See en.wikipedia.org/wiki/Thread_safety

https://en.wikipedia.org/wiki/Thread_safety


16See en.wikipedia.org/wiki/Race_condition#Software

• Java shared objects & message passing 
are designed to share resources safely 
& avoid concurrency hazards, e.g.

• Race conditions

• Race conditions occur when a 
program depends upon the 
sequence or timing of threads
for it to operate properly

An Overview of Concurrent Programming Hazards

write()

read()

https://en.wikipedia.org/wiki/Race_condition#Software


17

An Overview of Concurrent Programming Hazards

See github.com/douglascraigschmidt/LiveLessons/tree/master/BuggyQueue

This test program induces race conditions due 
to lack of synchronization between producer & 
consumer threads accessing a bounded queue

write()

read()

• Java shared objects & message passing 
are designed to share resources safely 
& avoid concurrency hazards, e.g.

• Race conditions

• Race conditions occur when a 
program depends upon the 
sequence or timing of threads
for it to operate properly

https://github.com/douglascraigschmidt/LiveLessons/tree/master/BuggyQueue


18

An Overview of Concurrent Programming Hazards
• Java shared objects & message passing 

are designed to share resources safely 
& avoid concurrency hazards, e.g.

• Race conditions

• Memory inconsistencies

• These errors occur when different 
threads have inconsistent views of
what should be the same data

See jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html

http://jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html


19

An Overview of Concurrent Programming Hazards
• Java shared objects & message passing 

are designed to share resources safely 
& avoid concurrency hazards, e.g.

• Race conditions

• Memory inconsistencies

• Deadlocks

• Occur when 2+ competing threads 
are waiting for the other(s) to finish, 
& thus none ever do

T2T1

<<owns>>

<<owns>> <<needs>>

<<needs>>

L1

L2

See en.wikipedia.org/wiki/Deadlock

http://en.wikipedia.org/wiki/Deadlock


20

End of Overview of 
Concurrent Programming

in Java


