Douglas C. Schmidt
id.schmidt@uanderhiit.edu
www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software
Integrated Systems

Vanderbilt University
Nashuille, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

<=Java Class=»

Thread (® Thread

Program Counter & yield()void

 Recognize how these concepts & currentThread() Thread

Stack Native Stack &sleep(long)-void

are supported |n Java & sleep(long.int)-void

@ Thready)
@ Thread(Runnable)
@ Thread{String)

@ start():void
\\ // @ run()void

) @ exit{)void

@ interrupt():void

AN
EaCh .]ava l‘/?/‘ead & interrupted():boolean

g @ isInterrupted():boolean
has lts own StaC/(/ o isAlive():boolean

/‘eg/:gterg/ elc. o setPriority(int)-void

& getPriarity()int

& join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean)void
o isDaemon()-boolean

An Overview of Concurrent
Programming In Java

An Overview of Concurrent Programming in Java

A Java thread is an object

Class Thread

java.lang.Object
java.lang.Thread

All Implemented Interfaces:

Runnable

Direct Known Subclasses:
ForkJoinWorkerThread

public class Thread
extends Object
implements Runnable

A thread is a thread of execution in a program. The Java Virtual Machine allows an
application to have multiple threads of execution running concurrently.

Every thread has a priority. Threads with higher priority are executed in preference to
threads with lower priority. Each thread may or may not also be marked as a daemon.
When code running in some thread creates a new Thread object, the new thread has its
priority initially set equal to the priority of the creating thread, and is a daemon thread
if and only if the creating thread is a daemon.

See docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

An Overview of Concurrent Programming in Java

« A Java thread is an object, e.g.

Thread
It contains methods & fields r———
Stack Native Stack
\ p
\\ pd
|
Each Java thread
has its own stack,

registers, etc.

<=Java Class=»

(® Thread

& yield()-void

@ currentThread(): Thread
& sleep(long)-void

& sleep(long.int)-void

@ Thready)

@ Thread(Runnable)

@ Thread{String)

@ start():void

@ run()void

@ exit{)void

@ interrupt():void

& interrupted():boolean
@ isInterrupted():boolean
o isAlive():boolean

o setPriority(int)-void

& getPriarity()int

& join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean)void
o isDaemon()-boolean

See blog.jamesdbloom.com/JVMInternals.html

http://blog.jamesdbloom.com/JVMInternals.html

An Overview of Concurrent Programming in Java

« A Java thread is an object, e.g.

Blocked

resource
obtained,

new MyThread() attempt to access

guarded resource

cond.notify(),

cond.notifyAll()

e It can also be in one of
various “states”

myThread.start()

run()

Runnable

Timed
Waiting

cond.wait()

®

run() method /

returns

wait-time
elapsed

myThread.sleep()
wait(timeout)
join(timeout)

Terminated)

See docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html

An Overview of Concurrent Programming in Java
« Concurrent Java threads interact via shared objects and/or message passing

-
eg éé send () %é
\

read ()

wr1te ()
n\‘%

read ()

\

See docs.oracle.com/javase/8/docs/api/?java/util/concurrent/package-summary.html

https://docs.oracle.com/javase/8/docs/api/?java/util/concurrent/package-summary.html

An Overview of Concurrent Programming in Java

« Concurrent Java threads interact via shared objects and/or message passing

- Shared objects

 Synchronize concurrent operations on *é é send ()

objects to ensure certain properties

read () A

%é
— _)'

read ()
T3

™

Awaiting lock T

Lock acquired

A P
Running

Critical Section Lock released Thread

See en.wikipedia.org/wiki/Synchronization (computer science)

https://en.wikipedia.org/wiki/Synchronization_(computer_science)

An Overview of Concurrent Programming in Java
« Concurrent Java threads interact via shared objects and/or message passing

- Shared objects ’ _)
i i eg éé send () %é
 Synchronize concurrent operations on - A
. . . read()
objects to ensure certain properties, e.q. " recv()
« Mutual exclusion mte 0 .\ §
. —>
 Interactions between threads el

won't corrupt shared mutable data

See en.wikipedia.org/wiki/Monitor (svnchronization)#MutuaI- exclusion

https://en.wikipedia.org/wiki/Monitor_(synchronization)#Mutual_exclusion

An Overview of Concurrent Programming in Java

« Concurrent Java threads interact via shared objects and/or message passing

- Shared objects

%
send ()

- . i %
- Synchronize concurrent operations on - 5 ,,é

objects to

wri e()
o '° ﬂ\é
« Coordination read ()

« Operations occur in the right order, —
at the right time, & under the right Pl
conditions

read()

ensure certain properties, e.q.

~

See en.wiki

pedia.org/wiki/Monitor_(synchronization)#Condition variables

https://en.wikipedia.org/wiki/Monitor_(synchronization)#Condition_variables

An Overview of Concurrent Programming in Java

« Concurrent Java threads interact via shared objects and/or message passing

- Shared objects

fﬁg

read()

« Examples of Java synchronizers:

. write ()/B\ %g
» Synchronized statements/methods

\

%
. send ()

read ()

~

» Reentrant locks & intrinsic locks

« Atomic operations

« Semaphores

« Condition objects

« “Compare-and-swap” (CAS)
operations in sun.misc.unsafe

See dzone.com/articles/the-java-synchronizers

https://dzone.com/articles/the-java-synchronizers

An Overview of Concurrent Programming in Java

« Concurrent Java threads interact via shared objects and/or message passing

« Message passing

« Send message(s) from producer
thread(s) to consumer thread(s)
via a thread-safe queue

Thread 1

-
ég éé send ()
\

read ()

write ()
/B\ g
read ()

%é

1

recv ()

\

Thread 2

Put

BlockingQueue

Take

See en.wikipedia.org/wiki/Message passing

https://en.wikipedia.org/wiki/Message_passing

An Overview of Concurrent Programming in Java

« Concurrent Java threads interact via shared objects and/or message passing

-

- Message passing —Z

« Examples of Java thread-safe queues
« Array & linked blocking queues
* Priority blocking queue
« Synchronous queue
« Concurrent linked queue

See docs.oracle.com/javase/tutorial/collections/im

read ()

write ()
/G\ g
read ()

9% send () %é

lementations/

ueue. htmI

https://docs.oracle.com/javase/tutorial/collections/implementations/queue.html

An Overview of Concurrent
Programming Hazards

14

An Overview of Concurrent Programming Hazards

« Java shared objects & message passing
are designed to share resources safely Al
& avoid concurrency hazards

».\ﬁ

e f o

‘ See en.wikipedia.org/wiki/Thread safety |

https://en.wikipedia.org/wiki/Thread_safety

An Overview of Concurrent Programming Hazards

« Java shared objects & message passing 4)
are designed to share resources safely -
& avoid concurrency hazards, e.qg.

- Race conditions weite)’

« Race conditions occur when a =5
program depends upon the
sequence or timing of threads
for it to operate properly

J

Shared State

See en.wikipedia.org/wiki/Race condition#Software

https://en.wikipedia.org/wiki/Race_condition#Software

An Overview of Concurrent Programming Hazards

 Java shared objects & message passing 4)
are designed to share resources safely >
& avoid concurrency hazards, e.qg.

Race conditions

« Race conditions occur when a =5 \ /
program depends upon the .
sequence or timing of threads
for it to operate properly

J

_ i . Shared State
This test program induces race conditions due

to lack of synchronization between producer &
consumer threads accessing a bounded gueue

See github.com/douglascraigschmidt/LiveLessons/tree/master/BuggyQueue

https://github.com/douglascraigschmidt/LiveLessons/tree/master/BuggyQueue

An Overview of Concurrent Programmlng Hazards

« Java shared objects & message passing
are designed to share resources safely
& avoid concurrency hazards, e.qg.

« Memory inconsistencies

« These errors occur when different
threads have inconsistent views of
what should be the same data

See jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html

http://jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html

An Overview of Concurrent Programming Hazards

 Java shared objects & message passing
<<needs.?) E (ﬁ)wns>>

are designed to share resources safely
& avoid concurrency hazards, e.qg.

 Deadlocks > T
« Occur when 2+ competing threads 2
are waiting for the other(s) to finish,
& thus none ever do
<<owns>> <<needs>>

See en.wikipedia.org/wiki/Deadlock

http://en.wikipedia.org/wiki/Deadlock

End of Overview of
Concurrent Programming
In Java

20

