Douglas C. Schmidt <u>d.schmidt@vanderbilt.edu</u> www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software Integrated Systems

Vanderbilt University Nashville, Tennessee, USA

Learning Objectives in this Part of the Lesson

 Understand the meaning of key concurrent programming concepts

background threads

 Sequential programming is a form of computing that executes the same sequence of instructions & always produces the same results

See <u>en.wikipedia.org/wiki/Sequential_algorithm</u>

- Sequential programming is a form of computing that executes the same sequence of instructions & always produces the same results
 - i.e., execution is deterministic

See screenprism.com/insights/article/what-is-the-ludovico-technique-and-how-does-it-work

 Sequential programs have two characteristics

- Sequential programs have two characteristics:
 - The textual order of statements specifies their order of execution

public E get(int index) {
 rangeCheck(index);

return elementData

(index);

e.g., the rangeCheck() method **must** be called before the elementData() method

See src/share/classes/java/util/ArrayList.java

- Sequential programs have two characteristics:
 - The textual order of statements specifies their order of execution .

• Successive statements must execute without any temporal overlap

Concurrent programming is a form of computing where threads can run simultaneously

See en.wikipedia.org/wiki/Concurrency_(computer_science)

Concurrent programming is a form of computing where threads can run simultaneously

See docs.oracle.com/javase/tutorial/essential/concurrency/threads.html

Concurrent programming is a form of computing where threads can run simultaneously

```
for (int i = 0; i < sMax; i++)
new Thread(() ->
    someComputation()).
    start();
```


Threads may be multiplexed over one core, though this is increasingly rare..

See <u>en.wikipedia.org/wiki/Single-core</u>

• Different executions of a concurrent program may produce different instruction orderings

See <u>en.wikipedia.org/wiki/Nondeterministic_algorithm</u>

- Different executions of a concurrent program may produce different instruction orderings:
 new Thread(() ->
 - The textual order of the source code doesn't define the order of execution

```
computationA()).
```

```
start();
```


- Different executions of a concurrent program may produce different instruction orderings:
 - The textual order of the source code doesn't define the order of execution
 - Operations are permitted to overlap in time

 Concurrent programming is often used to offload work from the user interface (UI) thread to background thread(s)

See developer.android.com/topic/performance/threads.html

- Concurrent programming is often used to offload work from the user interface (UI) thread to background thread(s), e.g.
 - Background thread(s) can block

See developer.android.com/training/multiple-threads/communicate-ui.html

- Concurrent programming is often used to offload work from the user interface (UI) thread to background thread(s), e.g.
 - Background thread(s) can block
 - The UI thread does not block

See developer.android.com/training/multiple-threads/communicate-ui.html

- Concurrent programming is often used to offload work from the user interface (UI) thread to background thread(s), e.g.
 - Background thread(s) can block
 - The UI thread does not block
 - Any mutable state shared between these threads must be protected to avoid concurrency hazards

See upcoming lesson on "Overview of Concurrency in Java"