Douglas C. Schmidt
id.schmidt@uanderhiit.edu
www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software
Integrated Systems

Vanderbilt University
Nashuille, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Understand the meaning of key

: background threads
concurrent programming concepts / \ / \

! %
send () recv () 9% é
\ /..7

\ read()/
\@ o .

UI thread

An Overview of
Sequential Programming

An Overview of Sequential Programming

» Sequential programming is a form
of computing that executes the
same sequence of instructions &
always produces the same results

See en.wiki :)edia.org/wiki/Sec uential algorithm

https://en.wikipedia.org/wiki/Sequential_algorithm

An Overview of Sequential Programming

» Sequential programming is a form
of computing that executes the
same sequence of instructions &
always produces the same results

* i.e., execution is deterministic

See screen

3rism.com/insights/article/what—is—the—ludovico-technic

ue-and-how-does-it-work

http://screenprism.com/insights/article/what-is-the-ludovico-technique-and-how-does-it-work

An Overview of Sequential Programming

» Sequential programs have two
S

characteristics

% §
10, Y
=\ 7,
X

An Overview of Sequential Programming

» Sequential programs have two public E get(int index) {
characteristics: rangeCheck (index) ;

* The textual order of statements

- . : return elementData
specifies their order of execution

(index) ;

e.g., the rangeCheck() method must be
called before the elementData() method

See src/share/classes/java/util/ArrayList.java

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/tip/src/share/classes/java/util/ArrayList.java

An Overview of Sequential Programming
» Sequential programs have two

characteristics: | I ’

« Successive statements must execute
without any temporal overlap

An Overview of
Concurrent Programming

An Overview of Concurrent Programming

« Concurrent programming is a form of computing where threads can run

simultaneously

-\
.8 ™.

\

J

See en.wikipedia.org/wiki/Concurrency (computer science)

https://en.wikipedia.org/wiki/Concurrency_(computer_science)

An Overview of Concurrent Programming

« Concurrent programming is a form of computing where threads can run

simultaneously -

for (int i = 0; i < sMax; i++) = ~Z s
new Thread(() -> / '
someComputation()) .

start () ;
/ g ~
(== J
A thread is a unit of execution for /

instruction streams that can run {I\f\ Z

concurrently on 1+ processor cores

See docs.oracle.com/javase/tutorial/essential/concurrency/threads.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/threads.html

An Overview of Concurrent Programming

« Concurrent programming is a form of computing where threads can run

simultaneously

p
for (int i = 0; i < sMax; i++) =5 =g
new Thread(() ->
someComputation()) .
start () ;

5

\

-
-

Threads may be multiplexed over one

core, though this is increasingly rare.. | ————o ? b

See en.wikipedia.orag/wiki/Single-core

https://en.wikipedia.org/wiki/Single-core

An Overview of Concurrent Programming

« Different executions of a concurrent program may produce different
instruction orderings

See en.wikipedia.org/wiki/Nondeterministic algorithm

https://en.wikipedia.org/wiki/Nondeterministic_algorithm

An Overview of Concurrent Programming

« Different executions of a concurrent program may produce different

instruction orderings:

* The textual order of the source code
doesn’t define the order of execution

computationA(), computationB(), &
computationC() can run in any order
once they start their execution

new Thread(() ->
computationA()) .
start () ;

new Thread(() ->
computationB()) .
start () ;

new Thread(() ->
computationC()) .
start () ;

14

An Overview of Concurrent Programming

« Different executions of a concurrent program may produce different
instruction orderings:

« Operations are permitted to overlap
in time

15

An Overview of Concurrent Programming
« Concurrent programming is often used to offload work from the user interface

(UI) thread to background thread(s) p -
\ \ 5

background
g

\

threads :g

ur
thread

See developer.android.com/topic/performance/threads.html

https://developer.android.com/topic/performance/threads.html

An Overview of Concurrent Programming

« Concurrent programming is often used to offload work from the user interface
(UI) thread to background thread(s), e.g. ,

« Background thread(s) can block ﬁé\ ég ,

background

threads

See developer.android.com/training/multiple-threads/communicate-ui.html

https://developer.android.com/training/multiple-threads/communicate-ui.html

An Overview of Concurrent Programming

« Concurrent programming is often used to offload work from the user interface
(UI) thread to background thread(s), e.g. ,

—Z
. The UI thread does not block \backg>0

threads

See developer.android.com/training/multiple-threads/communicate-ui.html

https://developer.android.com/training/multiple-threads/communicate-ui.html

An Overview of Concurrent Programming
« Concurrent programming is often used to offload work from the user interface

(UI) thread to background thread(s), e.g. , N
< =€
read() %é
\
» Any mutable state shared between S _.
these threads must be protected =5 ~Z

J

to avoid concurrency hazards

Shared State

See upcoming lesson on " Overview of Concurrency in Java'

End of Overview of
Concurrent Programming

20

