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Learning Objectives in this Part of the Lesson

« Understand how the Java executor framework decouples the creation &
management of threads from the rest of the app logic
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Learning Objectives in this Part of the Lesson

« Know the types of thread pools supported by the Java executor framework
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Learning Objectives in this Part of the Lesson

* Recognize a human known use of thread pools




Overview of the Java
Executor Framework




Overview of The Java Executor Framework

 The Java executor framework provides many classes & interfaces that
decouple the creation & management of threads from application task logic
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Overview of The Java Executor Framework

» Access to the mechanisms
defined by Java’s executor
framework i1s mediated via
the Executors class
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See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html
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Overview of The Java Executor Framework

Access to the mechanisms
defined by Java’s executor
framework i1s mediated via
the Executors class

e This class defines a
“facade” consisting of
factory methods
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& callable(Runnable T):Callable<T=
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See en.wikipedia.org/wiki/Facade pattern &

en.wikipedia.org/wiki/Factory method pattern
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Overview of The Java Executor Framework

» Access to the mechanisms
defined by Java’s executor
framework i1s mediated via
the Executors class

e These factory methods
create thread pools

<<lava Class==
(9 Executors

& newFixedThreadPool(int): ExecutorService

& newWorkStealingPool{int) ExecutorSenice

& newWorkStealingPool): ExecutorSenice

& newFixedThreadPool(int, ThreadFactory): ExecutorSenvice

& newSingleThreadExecutor():ExecutorSenice

& newSingleThreadExecutor(ThreadF actory) ExecutorSenice
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& newSingleThreadScheduledExecutor{ThreadFactory): ScheduledExecutorSenice
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& callable(Runnable T):Callable<T=

& callable(Runnable):Callable<Object>

& callable(PrivilegedAction<?=):Callable<Object=

¢ callable({PrivilegedExceptionAction=7?=):Callable<Object=

& privilegedCallable(Callable<T=):Callable<T=

& privilegedCallableUsingCurrentClassLoader{Callable<T=):Callable<T=

See en.wikipedia.org/wiki/Thread pool pattern
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Overview of
Thread Pools
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Overview of Thread Pools

e Concurrent programs must often handle a
large # of clients

e.q., consider a web server that
must handle thousands of client

requests simultaneously
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Overview of Thread Pools

 However, spawning a thread per client
doesn’t scale
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Overview of Thread Pools
« However, spawning a thread per client
doesn't scale, e.g. +§->
« Dynamically spawning a thread per client SSPFS RS S SNS
Incurs excessive processing overhead SSSTHS SN <K

void handleClientRequest(Request request) {
new Thread(makeRequestRunnable(request));
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Overview of Thread Pools

 However, spawning a thread per client
doesn’t scale, e.qg.

e |t consumes an excessive amount of
memory resources for all the threads

void handleClientRequest(Request request) {
new Thread(makeRequestRunnable(request));
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Overview of Thread Pools

« A pool of threads is often a better way
to scale concurrent app performance
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See en.wikipedia.org/wiki/Thread pool pattern
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Overview of Thread Pools

« A pool of threads is often a better way
to scale concurrent app performance

 Amortizes memory/processing overhead
associated with spawning threads
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Overview of Thread Pools

« A pool of threads is often a better way
to scale concurrent app performance

« Pool size determined by factors like # 4Pool of worker thread®
of cores, 1/0-intensive vs. compute-

Intensive tasks Iiir
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See www.ibm.com/developerworks/library/i-jtp0730



http://www.ibm.com/developerworks/library/j-jtp0730

Overview of Thread Pools

» Java’s executor service framework
has several types of thread pools
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Overview of Thread Pools

« Java’s executor service framework
has several types of thread pools
o Fixed-size pool

 Reuses a fixed # of
threads to amortize
creation overhead

mExecutor = Executors.newFixedThreadPool (sMAX_THREADS);

void handleClientRequest(Request request) {
mExecutor .execute(makeRequestRunnable(request));

See docs.oracle.com/javase/8/docs/api/java/util/
concurrent/Executors.html#newFixedThreadPool
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Overview of Thread Pools

« Java’s executor service framework
has several types of thread pools
o Fixed-size pool

 Reuses a fixed # of
threads to amortize
creation overhead

|| runnable

X e
Addition tasks will be queued \\\ 0ol of worker thf
until a thread is available — . p—

mExecutor = Executors.newFixedThreadPool (sMAX THREADS);

void handleClientRequest(Request request) {
mExecutor .execute(makeRequestRunnable(request));
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Overview of Thread Pools

« Java’s executor service framework
has several types of thread pools

e Cached

e Create new threads on-
demand in response to
client workload

mExecutor = Executors.newCachedThreadPool();

void handleClientRequest(Request request) {
mExecutor .execute(makeRequestRunnable(request));

See docs.oracle.com/javase/8/docs/api/java/util/
concurrent/Executors.html#newCachedThreadPool
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Overview of Thread Pools

« Java’s executor service framework
has several types of thread pools

e Cached

e Create new threads on-
demand in response to
client workload

Threads are terminated if
not used for a certain time

mExecutor = Executors.newCachedThreadPool();

void handleClientRequest(Request request) {
mExecutor .execute(makeRequestRunnable(request));
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Overview of Thread Pools

e Java's executor service framework Deque Deque Deque

has several types of thread pools
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mExecutor = Executors.newWorkStealingPool();

void handleClientRequest(Request request) {
mExecutor .execute(makeRequestRunnable(request));

See docs.oracle.com/javase/8/docs/api/java/util/
concurrent/Executors.html#newWorkStealingPool
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Overview of Thread Pools

e Java's executor service framework Deque Deque Deque

has several types of thread pools
Sub-Task,
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o Fork/join pool
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mExecutor = Executors.newWorkStealingPool();

void handleClientRequest(Request request) {
mExecutor .execute(makeRequestRunnable(request));
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Overview of Thread Pools

* There are also other ways of implementing thread pools
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See www.dre.vanderbilt.edu/~schmidt/PDF/If.pdf &

www.dre.vanderbilt.edu/~schmidt/PDF/HS-HA.pdf
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Human Known Uses
of Thread Pools
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Human Known Uses of Thread Pools

* A human known use of a thread pool is a call center

|
-

See en.wikipedia.org/wiki/Call centre
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End of Overview of the Java
Executor Framework (Part 1)
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