Overview of the Java Executor
Framework (Part 1)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Understand how the Java executor framework decouples the creation &
management of threads from the rest of the app logic

<<Java Class>>
(® ExecutorCompletionService<V>

-executor 0 -aes | 0..1
<<Java Interface>> << Class>>
@ CompletionService<V> <<Java Interface>> <<Java Class>> e Eva atss
& Executor (& AbstractExecutorService xecirs
<<Java Interface>> <<Java Class>> <<Java Class>> <<Java Class>>
& ExecutorService ® ThreadPoolExecutor (& DefaultThreadFactory € Runnablt?Adapter<T>

<<Java Class>>
(3 QueueingFuture

% =warkers
* << =
<= Java Class>> — Java Class

(9 Scheduled ThreadPoolExecutor G‘?\forker

<<Java Interface>=
¥ Callable<V>

' ~callable 0..1
<<Java Interface>> - <<Java |nterface>}é E‘l <<Java Interface>> -task 0..1
¥ ScheduledExecutorService € Runnable © RunnableFuture<V>
=<<Java Interface=>>

3 Future<V>

T T

<<Java Class>> <<Java Class>> <<Ja\fa Class>>
(& DelayedWorkQueue (& ScheduledFuture Task<V> (@ Future Task<V>

Learning Objectives in this Part of the Lesson

« Know the types of thread pools supported by the Java executor framework

Variable-sized
Thread Pool

Work-stealing

Thread Pool
Deque Deque Deque
Fixed-sized
Sub-Task, ,
Thread Pool ——
Sub-Task, 5 Sub-Task, 5
Sub-Task, 4 Sub-Task; 4

T -
e

Learning Objectives in this Part of the Lesson

* Recognize a human known use of thread pools

Overview of the Java
Executor Framework

Overview of The Java Executor Framework

 The Java executor framework provides many classes & interfaces that
decouple the creation & management of threads from application task logic

<<Java Class>>
(® ExecutorCompletionService<V>

-executor 0 -aes | 0..1
<<Java Interface>> << Class>>
@ CompletionService<V> <<Java Interface>> <<Java Class>> ava 1ass
& Executor (& AbstractExecutorService G Exec;\mrs
<<Java Interface>>] <<Java Class>> <<Java Class>> <<Java Class>>
& ExecutorService ® ThreadPoolExecutor (& DefaultThreadFactory € Runnablt?Adapter<T>

<<Java Class>>
(3 QueueingFuture

% =warkers
* << =
<= Java Class>> — Java Class

(9 Scheduled ThreadPoolExecutor G‘?\forker

<<Java Interface>=
¥ Callable<V>

' ~callable 0..1
<<Java Interface>> - <<Java |nterface>}é E‘l <<Java Interface>> -task 0..1
¥ ScheduledExecutorService € Runnable © RunnableFuture<V>
=<<Java Interface=>>

3 Future<V>

T T

<<Java Class>> <<Java Class>> <<Ja\fa Class>>
(& DelayedWorkQueue (& ScheduledFuture Task<V> (@ Future Task<V>

Overview of The Java Executor Framework

» Access to the mechanisms
defined by Java’s executor
framework i1s mediated via
the Executors class

<<lava Class==
(9 Executors

& newFixedThreadPool(int): ExecutorService

& newWorkStealingPool{int) ExecutorSenice

& newWorkStealingPool): ExecutorSenice

& newFixedThreadPool(int, ThreadF actory): ExecutorService

& newSingleThreadExecutor():ExecutorSenice

& newSingleThreadExecutor(ThreadF actory) ExecutorSenice

&' newCachedThreadPool():ExecutorSenice

& newCachedThreadPool(ThreadF actory): ExecutorSenice

& newSingleThreadScheduledExecutor): ScheduledExecutorSenvice

& newSingleThreadScheduledExecutor{ThreadFactory): ScheduledExecutorSenice
& newScheduledThreadPool{int):ScheduledExecutorSenice

& newScheduledThreadPool{int ThreadFactory):ScheduledExecutorService
& defaultThreadFactory()

& privilegedThreadFactory()

& callable(Runnable T):Callable<T=

& callable(Runnable):Callable<Object>

& callable(PrivilegedAction<?=):Callable<Object=

¢ callable({PrivilegedExceptionAction=7?=):Callable<Object=

& privilegedCallable(Callable<T=):Callable<T=

& privilegedCallableUsingCurrentClassLoader{Callable<T=):Callable<T=

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html

Overview of The Java Executor Framework

Access to the mechanisms
defined by Java’s executor
framework i1s mediated via
the Executors class

e This class defines a
“facade” consisting of
factory methods

<<lava Class==
(9 Executors

& newFixedThreadPool(int): ExecutorService

& newWorkStealingPool{int) ExecutorSenice

& newWorkStealingPool): ExecutorSenice

& newFixedThreadPool(int, ThreadFactory): ExecutorSenvice

& newSingleThreadExecutor():ExecutorSenice

& newSingleThreadExecutor(ThreadF actory) ExecutorSenice

&' newCachedThreadPool():ExecutorSenice

& newCachedThreadPool(ThreadF actory): ExecutorSenice

& newSingleThreadScheduledExecutor): ScheduledExecutorSenvice

& newSingleThreadScheduledExecutor{ThreadFactory): ScheduledExecutorSenice
& newScheduledThreadPool{int):ScheduledExecutorSenice

& newScheduledThreadPool{int ThreadFactory):ScheduledExecutorService
& defaultThreadFactory()

& privilegedThreadFactory()

& callable(Runnable T):Callable<T=

& callable(Runnable):Callable<Object>

& callable(PrivilegedAction<?=):Callable<Object=

¢ callable({PrivilegedExceptionAction=7?=):Callable<Object=

& privilegedCallable(Callable<T=):Callable<T=

& privilegedCallableUsingCurrentClassLoader{Callable<T=):Callable<T=

See en.wikipedia.org/wiki/Facade pattern &

en.wikipedia.org/wiki/Factory method pattern

https://en.wikipedia.org/wiki/Facade_pattern
https://en.wikipedia.org/wiki/Factory_method_pattern

Overview of The Java Executor Framework

» Access to the mechanisms
defined by Java’s executor
framework i1s mediated via
the Executors class

e These factory methods
create thread pools

<<lava Class==
(9 Executors

& newFixedThreadPool(int): ExecutorService

& newWorkStealingPool{int) ExecutorSenice

& newWorkStealingPool): ExecutorSenice

& newFixedThreadPool(int, ThreadFactory): ExecutorSenvice

& newSingleThreadExecutor():ExecutorSenice

& newSingleThreadExecutor(ThreadF actory) ExecutorSenice
&' newCachedThreadPool():ExecutorSenice

& newCachedThreadPool(ThreadF actory): ExecutorSenice

& newSingleThreadScheduledExecutor): ScheduledExecutorSenvice

& newSingleThreadScheduledExecutor{ThreadFactory): ScheduledExecutorSenice
& newScheduledThreadPool{int):ScheduledExecutorSenice

& newScheduledThreadPool{int ThreadFactory):ScheduledExecutorService

& callable(Runnable T):Callable<T=

& callable(Runnable):Callable<Object>

& callable(PrivilegedAction<?=):Callable<Object=

¢ callable({PrivilegedExceptionAction=7?=):Callable<Object=

& privilegedCallable(Callable<T=):Callable<T=

& privilegedCallableUsingCurrentClassLoader{Callable<T=):Callable<T=

See en.wikipedia.org/wiki/Thread pool pattern

http://en.wikipedia.org/wiki/Thread_pool_pattern

Overview of
Thread Pools

10

Overview of Thread Pools

e Concurrent programs must often handle a
large # of clients

e.q., consider a web server that
must handle thousands of client

requests simultaneously

W W oW
EEEEEEEEEER]
W NN W
R

FEREEEEERREE

11

Overview of Thread Pools

 However, spawning a thread per client
doesn’t scale

| B\l \ B\ B\ il \ B\ ettt \ B\ ettt \ i
A\ \ it \ il \ it \ e\ it \ it \ il \ it \ e\t
A\t it \ it \ i\ it \ i\ S\ i\ it \ it

I T T I B e T

Overview of Thread Pools
« However, spawning a thread per client
doesn't scale, e.g. +§->
« Dynamically spawning a thread per client SSPFS RS S SNS
Incurs excessive processing overhead SSSTHS SN <K

void handleClientRequest(Request request) {
new Thread(makeRequestRunnable(request));

JAAA IS AR

e i T I S L e e T T

e i T B B B B i T B W L B

e i T) B B B G T B T) B

e T T e B T T e B e B

Overview of Thread Pools

 However, spawning a thread per client
doesn’t scale, e.qg.

e |t consumes an excessive amount of
memory resources for all the threads

void handleClientRequest(Request request) {
new Thread(makeRequestRunnable(request));

Jwﬂﬂwﬂﬂ_ﬂﬂﬂw

W NN W
EEE R R R pa—
FEREEEEERREE

14

Overview of Thread Pools

« A pool of threads is often a better way
to scale concurrent app performance

MJMMJMJMMMJ

W NN W
EEE R R R pa—
FEREEEEERREE

See en.wikipedia.org/wiki/Thread pool pattern

http://en.wikipedia.org/wiki/Thread_pool_pattern

Overview of Thread Pools

« A pool of threads is often a better way
to scale concurrent app performance

 Amortizes memory/processing overhead
associated with spawning threads

W W oW
EEEEEEEEEER]
W NN W
R

PRREEEEERREE

16

Overview of Thread Pools

« A pool of threads is often a better way
to scale concurrent app performance

« Pool size determined by factors like # 4Pool of worker thread®
of cores, 1/0-intensive vs. compute-

Intensive tasks Iiir
Wl oW W

T T T I BT e T T e B
| B\l \ B\ B\ il \ B\ ettt \ B\ ettt \ i
A\ \ it \ il \ it \ e\ it \ it \ il \ it \ e\t

S T S S S S . e . e e . e T

I T T I B e T

See www.ibm.com/developerworks/library/i-jtp0730

http://www.ibm.com/developerworks/library/j-jtp0730

Overview of Thread Pools

» Java’s executor service framework
has several types of thread pools

18

Overview of Thread Pools

« Java’s executor service framework
has several types of thread pools
o Fixed-size pool

 Reuses a fixed # of
threads to amortize
creation overhead

mExecutor = Executors.newFixedThreadPool (sMAX_THREADS);

void handleClientRequest(Request request) {
mExecutor .execute(makeRequestRunnable(request));

See docs.oracle.com/javase/8/docs/api/java/util/
concurrent/Executors.html#newFixedThreadPool

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html#newFixedThreadPool-int-

Overview of Thread Pools

« Java’s executor service framework
has several types of thread pools
o Fixed-size pool

 Reuses a fixed # of
threads to amortize
creation overhead

|| runnable

X e
Addition tasks will be queued \\\ 0ol of worker thf
until a thread is available — . p—

mExecutor = Executors.newFixedThreadPool (sMAX THREADS);

void handleClientRequest(Request request) {
mExecutor .execute(makeRequestRunnable(request));

20

Overview of Thread Pools

« Java’s executor service framework
has several types of thread pools

e Cached

e Create new threads on-
demand in response to
client workload

mExecutor = Executors.newCachedThreadPool();

void handleClientRequest(Request request) {
mExecutor .execute(makeRequestRunnable(request));

See docs.oracle.com/javase/8/docs/api/java/util/
concurrent/Executors.html#newCachedThreadPool

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html#newCachedThreadPool--

Overview of Thread Pools

« Java’s executor service framework
has several types of thread pools

e Cached

e Create new threads on-
demand in response to
client workload

Threads are terminated if
not used for a certain time

mExecutor = Executors.newCachedThreadPool();

void handleClientRequest(Request request) {
mExecutor .execute(makeRequestRunnable(request));

22

Overview of Thread Pools

e Java's executor service framework Deque Deque Deque

has several types of thread pools

Sub-Task,

Sub-Task, 3 Sub-Task; 5

Sub-Task, 4 _ - Sub-Task; 4
e For k/jO/h pOO/ ' \\“'\\ \&\ Sub-Taski , L:.l'x_ x

- g sl ma W .
« Supports “work stealing BRI, T A e
S "

gueues that maximize

core utilization S
. 4 Pool of worker threa®

\""ﬂ._ - :-f__,:_r"’" -

mExecutor = Executors.newWorkStealingPool();

void handleClientRequest(Request request) {
mExecutor .execute(makeRequestRunnable(request));

See docs.oracle.com/javase/8/docs/api/java/util/
concurrent/Executors.html#newWorkStealingPool

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html#newWorkStealingPool--

Overview of Thread Pools

e Java's executor service framework Deque Deque Deque

has several types of thread pools
Sub-Task,
Sub-Task, 3 Sub-Task; 5
Sub-Task, 4 - ' Sub-Task; 4

-
/

o Fork/join pool

o Supports “work stealing”
gueues that maximize
core utilization

Sub-Ta'.='.k1_1
“- - .\;\ \ T

N ‘4,) as
ool o r thred
The pool size defaults to - f worke S

all available processor cores
as Its target parallelism level/

mExecutor = Executors.newWorkStealingPool();

void handleClientRequest(Request request) {
mExecutor .execute(makeRequestRunnable(request));

24

Overview of Thread Pools

* There are also other ways of implementing thread pools

PRESPAWNED THREADS
WORKER WORKER WORKER WORKER
THREAD THREAD THREAD THREAD

—_

-

—-

>3

6 :process
5:dequeue

4 :engueue

3:recv (msg)

(msg)
(msg)

213
DR

He;
HANDLER

7

PRESPAWNED THREADS
LEADER FOLLOWER THREADS
WORKER WORKER WORKER WORKER
THREAD THREAD THREAD THREAD

™9

s

-9

s

MESSAGE QUEUES THREAD
(msg) // 2:dispatch () *Z
l:select ()
/O /O ¢ EVENT
HANDLER || HANDLER DEMUXER

l:select ()

(1) HALF-SYNC/HALF-ASYNC STRATEGY

EVENT
DEMUXER

5:process (msg)

4:promote_ leader ()
3:recv(msg)

2:dispatch()

Yy

SYNCHRONIZER

(2) LEADER/FOLLOWERS STRATEGY

See www.dre.vanderbilt.edu/~schmidt/PDF/If.pdf &

www.dre.vanderbilt.edu/~schmidt/PDF/HS-HA.pdf

http://www.dre.vanderbilt.edu/%7Eschmidt/PDF/lf.pdf
http://www.dre.vanderbilt.edu/%7Eschmidt/PDF/HS-HA.pdf

Human Known Uses
of Thread Pools

26

Human Known Uses of Thread Pools

* A human known use of a thread pool is a call center

|
-

See en.wikipedia.org/wiki/Call centre

http://en.wikipedia.org/wiki/Call_centre

End of Overview of the Java
Executor Framework (Part 1)

28

	Slide Number 1
	Learning Objectives in this Part of the Lesson
	Learning Objectives in this Part of the Lesson
	Learning Objectives in this Part of the Lesson
	Overview of the Java Executor Framework
	Overview of The Java Executor Framework
	Overview of The Java Executor Framework
	Overview of The Java Executor Framework
	Overview of The Java Executor Framework
	Overview of �Thread Pools
	Overview of Thread Pools
	Overview of Thread Pools
	Overview of Thread Pools
	Overview of Thread Pools
	Overview of Thread Pools
	Overview of Thread Pools
	Overview of Thread Pools
	Overview of Thread Pools
	Overview of Thread Pools
	Overview of Thread Pools
	Overview of Thread Pools
	Overview of Thread Pools
	Overview of Thread Pools
	Overview of Thread Pools
	Overview of Thread Pools
	Human Known Uses of Thread Pools
	Human Known Uses of Thread Pools
	End of Overview of the Java Executor Framework (Part 1)

