Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

Fork-Join Pool

Deque Deque Deque

« Understand how the Java fork-join
framework implements work stealing P

Sub-Task, 3

Sub-Task; 3

Sub-Task; 4 f] Sub-Task; 4

~ =
e
\\\\\\

Working Stealing in
a Java Fork-Join Pool

Work Stealing in a Java Fork-Join Pool

« Worker threads only block if there WorkQueue WorkQueue WorkQueue
are no tasks available to run

Work Stealing in a Java Fork-Join Pool

« Worker threads only block if there workQueue WorkQueue WorkQueue
are no tasks available to run

* Blocking threads & cores is
costly on modern processors

A EDIEIRAL RESERWVE NOTE [RSN AT

eﬁ!k‘\g

\:' Pool of worker thr

See Doug Lea’s talk at www.youtube.com/watch?v=sqOMX3fHkro

http://www.youtube.com/watch?v=sq0MX3fHkro

Work Stealing in a Java Fork-Join Pool

« Worker threads only block if there workQueue WorkQueue WorkQueue
are no tasks available to run

o
PRt

ks 3

s i

« A worker thread with an empty
deque thus checks other deques o | Sub-Tasks,
in the pool to find tasks to run

See www.dre.vanderbilt.edu/~schmidt/PDF/work-stealing-dequeue.pdf

http://www.dre.vanderbilt.edu/~schmidt/PDF/work-stealing-dequeue.pdf

Work Stealing in a Java Fork-Join Pool

« To maximize core utilization, idle workQueue WorkQueue WorkQueue
worker threads “steal” work from =
the tail of busy threads’ deques |
SUb‘TaSk12 '

Sub-Task; 5 Sub-Task; 5

SUb‘TaSk1 4 SUb'TaSk34

@ j iffy lube 9 pool of worker threa%”

See docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

http://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

Work Stealing in a Java Fork-Join Pool

« To maximize core utilization, idle workQueue WorkQueue WorkQueue
worker threads “steal” work from - A3
the tail of busy threads’ deques \
SUb‘TaSk12
Sub-Task; 5 Sub-Task; 5
Sub-Task, 4 Sub-Task; 4

2
4 Pool of worker threa®

The worker thread deque to steal from is selected randomly to lower contention

Work Stealing in a Java Fork-Join Pool

« To maximize core utilization, idle workQueue WorkQueue WorkQueue
worker threads “steal” work from v

the tail of busy threads’ deques —\

- Worker threads only steal from Sub-Task:2
other threads in their pool SUDTEELG 5

- i.e., there’s no “cross-pool” Sub-Task, 4
stealing

TN
N

SU b'TaSk3_3

Work Stealing in a Java Fork-Join Pool

To maximize core utilization, idle
worker threads “steal” work from
the tail of busy threads’ deques

 This limitation motivates the
use of the common fork-join

pool

See upcoming lessons on “The Common Fork-Join Pool”

Work Stealing in a Java Fork-Join Pool

« Tasks are stolen in FIFO order WorkQueue WorkQueue WorkQueue

T
N\

I Head Tail Sub-Task; 5
|> _pOll () Sub-Task; 3
push () i Sub-Task; 4

SU b'TaSk3_3

See en.wikipedia.org/wiki/FIFO (computing and electronics)

https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)

Work Stealing in a Java Fork-Join Pool

» Tasks are stolen in FIFO order WorkQueue WorkQueue WorkQueue
Minimizes contention w/worker —\ =
thraownlng the dqu | Sub-Task,,
“ Sub-Task; 5 Sub-Task; 3
Sub-Task, 4 Sub-Task; 4

S
< Pool of worker thread

See www.ibm.com/support/knowledgecenter/en/SS3KLZ/com.ibm.java.diagnostics.healthcenter.doc/topics/resolving.html

http://www.ibm.com/support/knowledgecenter/en/SS3KLZ/com.ibm.java.diagnostics.healthcenter.doc/topics/resolving.html

Work Stealing in a Java Fork-Join Pool
» Tasks are stolen in FIFO order WorkQueue WorkQueue WorkQueue

SUb'TaSk1 1

SUb‘TaSk1 2

« An older stolen task may

. . Sub-Task Sub-Task
provide a larger unit of work - >3
List<String> SU b'TaSk1 4 SU b'TaSk3_4
trySplit()
List<String>, List<String>,
202
trySplit() trySplit() Ool of worker thre

List<String> ; | | List<String>, , List<String>, | | List<String>; ,

This behavior arises from “divide & conquer” nature of fork-join tasks that split evenly

Work Stealing in a Java Fork-Join Pool

« Tasks are stolen in FIFO order WorkQueue WorkQueue WorkQueue

« An older stolen task may

. . Sub-Task
provide a larger unit of work >

Sub-Task; , Sub-Task; 4

List<String>

Larger chunks are pushed onto the deque before smaller chunks

Work Stealing in a Java Fork-Join Pool

« Tasks are stolen in FIFO order WorkQueue WorkQueue WorkQueue
SUb'TaSk11

An o_Ider stolen tasl_< may E— B
provide a larger unit of work

: : Sub-Task, 5 Sub-Task; 4

List<String>
trySplit() S N
List<String>4 List<String> P T W
:

N ‘4po (o
Ql of workw-

15

Work Stealing in a Java Fork-Join Pool

« Tasks are stolen in FIFO order WorkQueue WorkQueue WorkQueue

SUb'TaSk1 1

SUb'TaSk1 2

« An older stolen task may

. . Sub-Task Sub-Task
provide a larger unit of work = 33
List<String> Sub-Task, 4 .| Sub-Tasks,
trySplit()
List<String>, List<String>,
trySplit() | | trySplit() | - ol of worker th\’ead
List<String>, ; . pEpm— —

Work Stealing in a Java Fork-Join Pool

« Tasks are stolen in FIFO order WorkQueue WorkQueue WorkQueue

TN
N

SUb‘TaSk1 2

« An older stolen task may

. . Sub-Task
provide a larger unit of work -

SU b'TaSk3_3

List<String> U TRl Sub-Tasks 4
trySpiit() g L
List<String>; List<String>, G i<
—
4 a%
- Pool of worker thre2

trySplit() | | trySplit() |
List<String>, ; . . .-

Thread T, steals a larger (sub-)task from the end of the deque

Work Stealing in a Java Fork-Join Pool

« Tasks are stolen in FIFO order WorkQueue WorkQueue WorkQueue
Sub-Task; 4 4
Sub-Task; Sub-Task; ¢ »

« An older stolen task may
. . Sub-Task; 5 Sub-Task; ;5 Sub-Task; 5
provide a larger unit of work

- Sub-Task Sub-Task, 4, |
« Enables further recursive Hb-lask. ub-Tasky 1.4

decompositions by the

stealing thread

S
4 Pool of worker t\‘\\'ead_

18

Work Stealing in a Java Fork-Join Pool

« Tasks are stolen in FIFO order WorkQueue WorkQueue WorkQueue
Sub-Task; 4 4
Sub-Task; Sub-Task; ¢ »

« An older stolen task may
. . Sub-Task; 5 Sub-Task; ;5 Sub-Task; 5
provide a larger unit of work

. Sub-Task Sub-Task
- Enables further recursive wb-taski 4 ub-Task 1.4
decompositions by the
stealing thread

- “4po s
| Q’ of workw'

Again, larger chunks are pushed onto the deque before smaller chunks

Work Stealing in a Java Fork- Jom Pool
« The WorkQueue deque that implements work- :

stealing minimizes locking contention < | 4Stealing
Y, “pol1()
PO pihing
—2 | [TfeeeI 1] Deque
N Base Top

POP().. —» Popping

L Jele]

See www.dre.vanderbilt.edu/~schmidt/PDF/work-stealing-deque.pdf

http://www.dre.vanderbilt.edu/~schmidt/PDF/work-stealing-dequeue.pdf

Work Stealing in a Java Fork- Jom PooI

« The WorkQueue deque that implements work-

stealing minimizes locking contention _< | ’Stealing
« push() & pop() are only called by the / pol1)
owning worker thread |
— [["[elele] | Deque

\ i Base Top

POP(). P Popplng

21

Work Stealing in a Java Fork- Jom Pool

« The WorkQueue deque that implements work-
stealing minimizes locking contention _é Stealing

« push() & pop() are only called by the
owning worker thread

 These methods use wait-free “compare- .

poll()

and-swap” (CAS) operations /7 Pushing

ﬁé [T Tele®] | Deque

Base Top

,////--.,-" !
.:./ :II
%é [T [lelel

See en.wikipedia.org/wiki/Compare-and-swap

https://en.wikipedia.org/wiki/Compare-and-swap

Work Stealing in a Java Fork-Join Pool
« The WorkQueue deque that implements work- -

stealing minimizes locking contention < . (Stealing
« push() & pop() are only called by the ' / po110)
owning worker thread
« These methods use wait-free "compare- e
and-swap” (CAS) operations - /7, Pushing
« An operation is “wait-free” if every CTTeleel T Deque

' . Base Top

thread completes its operation in a | =
bounded # of steps, irrespective of I—
the # of contending threads

' POP().. P Popplng

See wwwi.justsoftwaresolutions.co.uk/threading/non_blocking lock free and wait_free.htm

http://www.justsoftwaresolutions.co.uk/threading/non_blocking_lock_free_and_wait_free.html

Work Stealing in a Java Fork- Jom PooI

« The WorkQueue deque that implements work-

stealing minimizes locking contention < . (Stealing
/ po110)
 poll() may be called from another A
worker thread to “steal” a (sub-)task /', Pushing -
> [([eleel 1] Deque
N Base Top

POP().. P Popplng

24

Work Stealing in a Java Fork-Join P_QQI__._

« The WorkQueue deque that implements work-

stealing minimizes locking contention < . (Stealing
/po11()
» poll() may be called from another A
worker thread to "steal” a (sub-)task /7, Pushing
« May not always be wait-free ~ [ITelee[] Deque
. Base Top

' POP().. P Popplng

See gee.cs.oswego.edu/dl/papers/fij.pdf

http://gee.cs.oswego.edu/dl/papers/fj.pdf

Work Stealing in a Java Fork-Join P_QQI____

« The WorkQueue deque that implements work-

stealing minimizes locking contention < . (Stealing
/ po11)
 poll() may be called from another A ——
worker thread to “steal” a (sub-)task /-~ Pushing
« May not always be wait-free ~ [ITelee[] Deque
. . . Base Top
* |.e., a thread may need to wait an |
unbounded amount of time to I
complete due to contention ~ poPO __» Popping

26

Work Stealing in a Java Fork-Join P_QQI____

« The WorkQueue deque that implements work-

stealing minimizes locking contention . (Stealing
/ po11)
 poll() may be called from another B
worker thread to “steal” a (sub-)task /-~ Pushing
« May not always be wait-free ~ [ITelee[] Deque
. . y Base Top
* |.e., a thread may need to wait an S~ B
unbounded amount of time to —
complete due to contention ~ PoPO > Popping
See "Implementation Overview” comments ﬁé \ e
in the ForkJoinPool source code for aetalls.. N

See java8/util/concurrent/ForkJoinPool.java

http://grepcode.com/file/repo1.maven.org/maven2/net.sourceforge.streamsupport/streamsupport/1.2.2/java8/util/concurrent/ForkJoinPool.java

End of Java Fork-Join
Framework Internals:
Work Stealing

28

