
Java Fork-Join Framework Internals: 
Work Stealing
Douglas C. Schmidt

    d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt 

Professor of Computer Science
Institute for Software 
Integrated Systems

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

• Understand how the Java fork-join framework 
implements worker threads

• Understand how the Java fork-join 
framework implements work stealing

Learning Objectives in this Part of the Lesson
Fork-Join Pool



3

Working Stealing in
a Java Fork-Join Pool



4

Work Stealing in a Java Fork-Join Pool
• Worker threads only block if there 

are no tasks available to run
  

WorkQueueWorkQueue WorkQueue



5

• Worker threads only block if there 
are no tasks available to run
• Blocking threads & cores is 

costly on modern processors 

  

WorkQueueWorkQueue WorkQueue

See Doug Lea’s talk at www.youtube.com/watch?v=sq0MX3fHkro

Work Stealing in a Java Fork-Join Pool

http://www.youtube.com/watch?v=sq0MX3fHkro


6

• Worker threads only block if there 
are no tasks available to run
• Blocking threads & cores is 

costly on modern processors
• A worker thread with an empty 

deque thus checks other deques 
in the pool to find tasks to run 

  

Sub-Task1.1

Sub-Task1.2

Sub-Task1.3 Sub-Task3.3

Sub-Task3.4

WorkQueue WorkQueue WorkQueue

Sub-Task1.4

Work Stealing in a Java Fork-Join Pool

See www.dre.vanderbilt.edu/~schmidt/PDF/work-stealing-dequeue.pdf 

http://www.dre.vanderbilt.edu/~schmidt/PDF/work-stealing-dequeue.pdf


7

• To maximize core utilization, idle 
worker threads “steal” work from 
the tail of busy threads’ deques
  

See docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html 

Sub-Task1.2

Sub-Task1.3

Sub-Task1.4

Sub-Task1.1

Sub-Task3.3

Sub-Task3.4

WorkQueue WorkQueue WorkQueue

poll()

Work Stealing in a Java Fork-Join Pool

http://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html


8

• To maximize core utilization, idle 
worker threads “steal” work from 
the tail of busy threads’ deques

  

Sub-Task1.2

Sub-Task1.3

Sub-Task1.4

Sub-Task1.1

Sub-Task3.3

Sub-Task3.4

WorkQueue WorkQueue WorkQueue

poll()

The worker thread deque to steal from is selected randomly to lower contention

Work Stealing in a Java Fork-Join Pool



9

• To maximize core utilization, idle 
worker threads “steal” work from 
the tail of busy threads’ deques
• Worker threads only steal from

other threads in their pool
• i.e., there’s no “cross-pool”

stealing

  

Sub-Task1.2

Sub-Task1.3

Sub-Task1.4

Sub-Task1.1

Sub-Task3.3

Sub-Task3.4

WorkQueue WorkQueue WorkQueue

poll()

Work Stealing in a Java Fork-Join Pool



10

• To maximize core utilization, idle 
worker threads “steal” work from 
the tail of busy threads’ deques
• Worker threads only steal from

other threads in their pool
• This limitation motivates the

use of the common fork-join
pool

  

Work Stealing in a Java Fork-Join Pool

See upcoming lessons on ”The Common Fork-Join Pool”



11

Sub-Task1.2

Sub-Task1.3

Sub-Task1.4

Sub-Task1.1

Sub-Task3.3

Sub-Task3.4

WorkQueue WorkQueue WorkQueue

See en.wikipedia.org/wiki/FIFO_(computing_and_electronics)
 

poll()

• Tasks are stolen in FIFO order 

  

Work Stealing in a Java Fork-Join Pool

push()

poll()
Head Tail

https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)


12

Sub-Task3.3

Sub-Task3.4

WorkQueue WorkQueue WorkQueue

Sub-Task1.2

Sub-Task1.3

Sub-Task1.4

• Tasks are stolen in FIFO order
• Minimizes contention w/worker

thread owning the deque

  

See www.ibm.com/support/knowledgecenter/en/SS3KLZ/com.ibm.java.diagnostics.healthcenter.doc/topics/resolving.html 
 

Sub-Task1.1

WorkQueue

poll()

Work Stealing in a Java Fork-Join Pool

http://www.ibm.com/support/knowledgecenter/en/SS3KLZ/com.ibm.java.diagnostics.healthcenter.doc/topics/resolving.html


13

Sub-Task1.1

• Tasks are stolen in FIFO order
• Minimizes contention w/worker

thread owning the deque
• An older stolen task may

provide a larger unit of work 

  

List<String>1.1 List<String>1.2

List<String>1 List<String>2
trySplit()

List<String>

trySplit()
List<String>2.1 List<String>2.2

trySplit()

Sub-Task1.2

Sub-Task1.3

Sub-Task1.4

Sub-Task3.3

Sub-Task3.4

WorkQueue WorkQueue WorkQueue

poll()

Work Stealing in a Java Fork-Join Pool

This behavior arises from “divide & conquer” nature of fork-join tasks that split evenly 

T2T1 T3



14

• Tasks are stolen in FIFO order
• Minimizes contention w/worker

thread owning the deque
• An older stolen task may

provide a larger unit of work 

  

List<String>
Sub-Task1.1

Sub-Task3.3

Sub-Task3.4

WorkQueue WorkQueue WorkQueue

poll()

Work Stealing in a Java Fork-Join Pool

Larger chunks are pushed onto the deque before smaller chunks

T2T1 T3



15

• Tasks are stolen in FIFO order
• Minimizes contention w/worker

thread owning the deque
• An older stolen task may

provide a larger unit of work 

  List<String>1 List<String>2
trySplit()

List<String>

Sub-Task1.1

Sub-Task3.3

Sub-Task3.4

WorkQueue WorkQueue WorkQueue

poll()

Work Stealing in a Java Fork-Join Pool

T2T1 T3

Sub-Task1.2

Sub-Task1.3



16

Sub-Task1.1

• Tasks are stolen in FIFO order
• Minimizes contention w/worker

thread owning the deque
• An older stolen task may

provide a larger unit of work 

  

List<String>1.1

List<String>1 List<String>2
trySplit()

List<String>

trySplit() trySplit()

Sub-Task1.2

Sub-Task1.3

Sub-Task1.4

Sub-Task3.3

Sub-Task3.4

WorkQueue WorkQueue WorkQueue

poll()

Work Stealing in a Java Fork-Join Pool

… … …

T2T1 T3



17

• Tasks are stolen in FIFO order
• Minimizes contention w/worker

thread owning the deque
• An older stolen task may

provide a larger unit of work 

  

List<String>1.1

List<String>1 List<String>2
trySplit()

List<String>

trySplit() trySplit()

Sub-Task1.2

Sub-Task1.3

Sub-Task1.4

Sub-Task1.1

Sub-Task3.3

Sub-Task3.4

WorkQueue WorkQueue WorkQueue

poll()

Work Stealing in a Java Fork-Join Pool

… … …

Thread T2 steals a larger (sub-)task from the end of the deque

T2T1 T3



18

• Tasks are stolen in FIFO order
• Minimizes contention w/worker

thread owning the deque
• An older stolen task may

provide a larger unit of work
• Enables further recursive 

decompositions by the 
stealing thread

  

Sub-Task3.3

Sub-Task3.4

WorkQueue WorkQueue WorkQueue

Sub-Task1.1.1

Sub-Task1.1.2

Sub-Task1.1.3

Sub-Task1.1.4

Sub-Task1.2

Sub-Task1.3

Sub-Task1.4

Work Stealing in a Java Fork-Join Pool

T2T1 T3



19

• Tasks are stolen in FIFO order
• Minimizes contention w/worker

thread owning the deque
• An older stolen task may

provide a larger unit of work
• Enables further recursive 

decompositions by the 
stealing thread

  

Sub-Task3.3

Sub-Task3.4

WorkQueue WorkQueue WorkQueue

Sub-Task1.1.1

Sub-Task1.1.2

Sub-Task1.1.3

Sub-Task1.1.4

Sub-Task1.2

Sub-Task1.3

Sub-Task1.4

Work Stealing in a Java Fork-Join Pool

T2T1 T3

Again, larger chunks are pushed onto the deque before smaller chunks



20See www.dre.vanderbilt.edu/~schmidt/PDF/work-stealing-deque.pdf

  
• The WorkQueue deque that implements work-

stealing minimizes locking contention
  

poll()

push()

pop()

Work Stealing in a Java Fork-Join Pool

http://www.dre.vanderbilt.edu/~schmidt/PDF/work-stealing-dequeue.pdf


21

  
• The WorkQueue deque that implements work-

stealing minimizes locking contention
• push() & pop() are only called by the 

owning worker thread

  

poll()

push()

pop()

Work Stealing in a Java Fork-Join Pool



22

  
• The WorkQueue deque that implements work-

stealing minimizes locking contention
• push() & pop() are only called by the 

owning worker thread
• These methods use wait-free “compare-

and-swap” (CAS) operations

  

poll()

push()

pop()

See en.wikipedia.org/wiki/Compare-and-swap 

Work Stealing in a Java Fork-Join Pool

https://en.wikipedia.org/wiki/Compare-and-swap


23

  
• The WorkQueue deque that implements work-

stealing minimizes locking contention
• push() & pop() are only called by the 

owning worker thread
• These methods use wait-free “compare-

and-swap” (CAS) operations
• An operation is “wait-free” if every 

thread completes its operation in a 
bounded # of steps, irrespective of
the # of contending threads

poll()

push()

pop()

See www.justsoftwaresolutions.co.uk/threading/non_blocking_lock_free_and_wait_free.html 

Work Stealing in a Java Fork-Join Pool

http://www.justsoftwaresolutions.co.uk/threading/non_blocking_lock_free_and_wait_free.html


24

  
• The WorkQueue deque that implements work-

stealing minimizes locking contention
• push() & pop() are only called by the 

owning worker thread
• poll() may be called from another 

worker thread to “steal” a (sub-)task

  

poll()

push()

pop()

Work Stealing in a Java Fork-Join Pool



25

  
• The WorkQueue deque that implements work-

stealing minimizes locking contention
• push() & pop() are only called by the 

owning worker thread
• poll() may be called from another 

worker thread to “steal” a (sub-)task
• May not always be wait-free

poll()

push()

pop()

See gee.cs.oswego.edu/dl/papers/fj.pdf  

Work Stealing in a Java Fork-Join Pool

http://gee.cs.oswego.edu/dl/papers/fj.pdf


26

  
• The WorkQueue deque that implements work-

stealing minimizes locking contention
• push() & pop() are only called by the 

owning worker thread
• poll() may be called from another 

worker thread to “steal” a (sub-)task
• May not always be wait-free
• i.e., a thread may need to wait an 

unbounded amount of time to 
complete due to contention

  

poll()

push()

pop()

Work Stealing in a Java Fork-Join Pool



27

  
• The WorkQueue deque that implements work-

stealing minimizes locking contention
• push() & pop() are only called by the 

owning worker thread
• poll() may be called from another 

worker thread to “steal” a (sub-)task
• May not always be wait-free
• i.e., a thread may need to wait an 

unbounded amount of time to 
complete due to contention

  

poll()

push()

pop()

See java8/util/concurrent/ForkJoinPool.java 

Work Stealing in a Java Fork-Join Pool

See “Implementation Overview” comments 
in the ForkJoinPool source code for details..

http://grepcode.com/file/repo1.maven.org/maven2/net.sourceforge.streamsupport/streamsupport/1.2.2/java8/util/concurrent/ForkJoinPool.java


28

End of Java Fork-Join 
Framework Internals: 

Work Stealing


