d.schmidt@uanderhilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Lesson
« Recognize the two programming paradigms supported by modern Java

(

)

Java$8

Naturally, these paradigms are also supported in versions above & beyond Java 8!

Learning Objectives in this Lesson
« Recognize the two programming paradigms supported by modern Java
 Object-oriented programming

Abstraction

" Polymorphism | £

Learning Objectives in this Lesson

« Recognize the two programming paradigms supported by modern Java

 Functional programming

Learning Objectives in this Lesson
« Recognize the two programming paradigms supported by modern Java

1
!
=
|
|
|

JAVA

We show some modern Java code fragments that we'll cover in more detail later

Overview of Programming
Paradigms in Modern Java

Overview of Programming Paradigms in Modern Java
« Modern Java is a “hybrid” combining object-oriented & functional paradigms

e.g., Prolog

FORTRAN Java, C# Haskell

See www.deadcoderising.com/why-you-should-embrace-lambdas-in-java-8

http://www.deadcoderising.com/why-you-should-embrace-lambdas-in-java-8

Overview of Programming Paradigms in Modern Java

» Object-oriented programming is an “imperative” paradigm

imperative

FORTRAN Java, C#

See en.wikipedia.org/wiki/Imperative programming

https://en.wikipedia.org/wiki/Imperative_programming

Overview of Programming Paradigms in Modern Java

» Object-oriented programming is an “imperative” paradigm
* e.g., a program consists of commands for the computer to perform

Imperative programming focuses on describing how a
program operates via statements that change its state

imperative

FORTRAN

Overview of Programming Paradigms in Modern Java

» Object-oriented programming is an “imperative” paradigm
* e.g., a program consists of commands for the computer to perform

List<String> zap (List<String> lines,
String omit) {
List<String> res =
new ArrayList<>() ;
for (String line : lines)
if ('omit.equals(line))
res.add(line) ;
return res;

imperative

Imperatively remove a given
string from a list of strings

10

Overview of Programming Paradigms in Modern Java

» Object-oriented programming is an “imperative” paradigm
* e.g., a program consists of commands for the computer to perform

List<String> zap (List<String> lines,
Create an empty list to hold results String omit) ({

\\\\\\\\List<8tring> res =

new ArrayList<>() ;
for (String line : lines)
if ('omit.equals(line))
res.add(line) ;
return res;

imperative

FORTRAN

11

Overview of Programming Paradigms in Modern Java

» Object-oriented programming is an “imperative” paradigm
* e.g., a program consists of commands for the computer to perform

List<String> zap (List<String> lines,
String omit) {
List<String> res =
new ArrayList<>();
for (String line : lines)
if ('omit.equals(line))
res.add(line) ;
return res;

Iterate sequentially through each line

imperative

FORTRAN

12

Overview of Programming Paradigms in Modern Java

» Object-oriented programming is an “imperative” paradigm
* e.g., a program consists of commands for the computer to perform

List<String> zap (List<String> lines,
String omit) ({
List<String> res =
new ArrayList<>();
for (String line : lines)
if ('omit.equals(line))
res.add(line) ;

return res;
}

Only add lines that dont
match the omi t string

imperative

FORTRAN

13

Overview of Programming Paradigms in Modern Java

» Object-oriented programming is an “imperative” paradigm
* e.g., a program consists of commands for the computer to perform

List<String> zap (List<String> lines,
String omit) {
List<String> res =
new ArrayList<>() ;
for (String line : lines)
if ('omit.equals(line))
res.add(line) ;
return res;

N

Return the list of non-matching lines

imperative

FORTRAN

14

Overview of Programming Paradigms in Modern Java
» Object-oriented programming is an “imperative” paradigm
* e.g., a program consists of commands for the computer to perform

List<String> zap (List<String> lines,

_ _ . String omit) {
This sequential code applies List<String> res =

the Accumulator anti-pattern new ArrayList<> () ;

for (String line : lines)
if ('omit.equals(line))

res.add(line) ;

return res;

FORTRAN

See developer.ibm.com/articles/j-java-streams-2-brian-goetz

https://developer.ibm.com/articles/j-java-streams-2-brian-goetz/

Overview of Programming Paradigms in Modern Java

« Conversely, functional programming is a “declarative” paradigm

peclarative

e.g., Prolog

Haskell

See en.wikipedia.org/wiki/Declarative programming

http://en.wikipedia.org/wiki/Declarative_programming

Overview of Programming Paradigms in Modern Java

« Conversely, functional programming is a “declarative” paradigm

* e.g., a program expresses computational logic without describing control
flow or explicit algorithmic steps

Declarative programming focuses on “"what” computations
should be performed, instead of on "how” to compute them

peclarative

e.g., Prolog

Haskell

17

Overview of Programming Paradigms in Modern Java

« Conversely, functional programming is a “declarative” paradigm

* e.g., a program expresses computational logic without describing control
flow or explicit algorithmic steps

List<String> zap(List<String> lines,
String omit) {
return lines
.stream/()
.filter (not (omit: :equals))
.collect(toList()) ;

peclarative

e.g., Prolog

Haskell

Declaratively remove a given
string from a list of strings

See github.com/douglascraigschmidt/LivelLessons/tree/master/Java8/ex0

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex0

Overview of Programming Paradigms in Modern Java

« Conversely, functional programming is a “declarative” paradigm

* e.g., a program expresses computational logic without describing control
flow or explicit algorithmic steps

List<String> zap (List<String> lines,
String omit) {

return lines o
.stream () | Convert list into a stream

.filter (not (omit: :equals))
.collect(toList()) ;

peclarative

e.g., Prolog

Haskell

See docs.oracle.com/javase/tutorial/collections/streams

https://docs.oracle.com/javase/tutorial/collections/streams/index.html

Overview of Programming Paradigms in Modern Java

« Conversely, functional programming is a “declarative” paradigm

* e.g., a program expresses computational logic without describing control
flow or explicit algorithmic steps

List<String> zap (List<String> lines,
String omit) {
return lines
.stream/()
.filter (not (omit: :equals))

.collect(toList()) ;
} \

Remove any line in the stream
that matches the omit param

peclarative

e.g., Prolog

Haskell

20

Overview of Programming Paradigms in Modern Java

« Conversely, functional programming is a “declarative” paradigm

* e.g., a program expresses computational logic without describing control
flow or explicit algorithmic steps

List<String> zap (List<String> lines,
String omit) ({
return lines
.stream/()
.filter (not (omit: :equals))
.collect(toList()) ;

} \
Collect all non-matching lines
into a list & return it the caller

peclarative

e.g., Prolog

Haskell

21

Overview of Programming Paradigms in Modern Java

« Conversely, functional programming is a “declarative” paradigm

* e.g., a program expresses computational logic without describing control
flow or explicit algorithmic steps

List<String> zap (List<String> lines,
String omit) {
return lines
.stream/()
.filter (not (omit: :equals))
.collect(toList()) ;

} \
Note "fluent” programming style
with cascading method calls

peclarative

e.g., Prolog

Haskell

See en.wikipedia.org/wiki/Fluent interface

https://en.wikipedia.org/wiki/Fluent_interface

Overview of Programming Paradigms in Modern Java

« Conversely, functional programming is a “declarative” paradigm

* e.g., a program expresses computational logic without describing control
flow or explicit algorithmic steps

List<String> zap (List<String> lines,
String omit) {

return lines

Iter i eclarative
parallelStZSam(Filter in paralle/ O .
.filter (not (omit: :equals)) QQ(\Ct'OI)t’/ \ogic

collect(toLlst()),

e.g., ML,
Haskell

e.g., Prolog

See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

Overview of Programming Paradigms in Modern Java

« Conversely, functional programming is a “declarative” paradigm

* e.g., a program expresses computational logic without describing control
flow or explicit algorithmic steps

List<String> zap (List<String> lines,
String omit) {

return lines
I
.parallelStream()
.filter (not (omit: :equals))
.collect(toList()) ;

peclarative

Filter in parallel

Code was parallelized with minuscule changes since it's declarative & stateless!

Overview of Programming Paradigms in Modern Java

« Summary of these two paradigms

, Q Search Twitter

’@t’ OO makes code understandable by encapsulating moving parts. FP makes
code understandable by minimizing moving parts.

)8 1 457 Q 438 Iy
Replies
| Kenji Hiranabe @hiranabe - Jul 22, 2014 b
Replying to @mfeathers

F7V o MEANEEH TN L TI— FOBBRME EIFf-oicx
L. BHEEZELER/IMLL Ta— FOBRMZ EIF /-, TRT "@mfeathers:
OO makes code understandable by encapsulating moving... "

© 1 n 3 Q 2 8

New to Twitter?

Sign up now to get your own personalized timeline!

Relevant people

Michael Feathers
! @mfeathers
Director, R7K Research & Conveyance.

Author of Working Effectively with
Legacy Code.

See twitter.com/mfeathers/status/295812962167lang=en

https://twitter.com/mfeathers/status/29581296216?lang=en

Overview of Programming Paradigms in Modern Java

« Summary of these two paradigms: List<String> zap

« Java's object-oriented programming (gis‘_KStri‘_“f lines,
features make code understandable ring omit) {

by en lating the moving parts List<String> res =
y Entapstiating 9P new ArrayList<>();

for (String line : lines)
if ('omit.equals(line))
res.add(line) ;
return res;

26

Overview of Programming Paradigms in Modern Java

« Summary of these two paradigms: List<String> zap
(List<String> lines,
String omit) {
return lines

.parallelStream()
« It's functional programming features .filter (not (omit: :equals))
make code understandable by .collect (toList());

eliminating the moving parts }

27

End of Overview of Java’s
Supported Programming
Paradigms

28

