Java 8 Functional Interfaces
Supplier

Douglas C. Schmidt



Learning Objectives in This Lesson

« Recognize foundational functional programming features in Java 8, e.q.,

Interface Supplier<T>

Type Parameters:

T - the type of results supplied by this supplier

 Key functional interfaces

Functional Interface:

This is a functional interface and can therefore be
used as the assignment target for a lambda
expression or method reference.

@FunctionalInterface
. public interface Supplier<T>
» Supplier

Represents a supplier of results.

There is no requirement that a new or distinct result be
returned each time the supplier is invoked.

This is a functional interface whose functional method is
get().




Douglas C. Schmidt

Overview of
Functional Interfaces: Supplier




Overview of Common Functional Interfaces: Supplier

* A Supplierreturns a value & takes no parameters, e.q.,
* public interface Supplier<T> { T get(), }

See docs.oracle.com/javase/8/docs/api/java/util/function/Supplier.html



http://docs.oracle.com/javase/8/docs/api/java/util/function/Supplier.html

Overview of Common Functional Interfaces: Supplier

* A Supplierreturns a value & takes no parameters, e.q.,
* public interface Supplier<T> { T get(), }

/

Supplier is a generic interface that is
parameterized by one reference type

See docs.oracle.com/javase/8/docs/api/java/util/function/Supplier.html



http://docs.oracle.com/javase/8/docs/api/java/util/function/Supplier.html

Overview of Common Functional Interfaces: Supplier

* A Supplierreturns a value & takes no parameters, e.q.,
* public interface Supplier<T> { T get(), }

/

Its single abstract method is passed no
parameters & returns a value of type T.

See docs.oracle.com/javase/8/docs/api/java/util/function/Supplier.html



http://docs.oracle.com/javase/8/docs/api/java/util/function/Supplier.html

Overview of Common Functional Interfaces: Supplier

* A Supplierreturns a value & takes no parameters, e.q.,
* public interface Supplier<T> { T get(); }

Map<String, String> beingMap = new HashMap<String, String>()
{ { put("Demon", "Naughty"), put("Angel", "Nice"); } };

String being = ...;

Optional<String> disposition =
Optional.ofNullable (beingMap.get (being)) ;

System.out.println("disposition of "
+ being + " ="
+ disposition.orElseGet(() -> "unknown")) ;

See github.com/douglascraigschmidt/Livel essons/tree/master/Java8/ex6



http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex6

Overview of Common Functional Interfaces: Supplier

* A Supplierreturns a value & takes no parameters, e.q.,

* public interface Supplier<T> { T get(); }

String> beingMap = new HashMap<String, String>()
"Nice"); } };

Map<String,
{ { put("Demon", "Naughty"), put("Angel",

String being = \ Create a hash map that associates
Y beings with their personality traits.

Optional<String> disposition
Optional.ofNullable (beingMap.get (being)) ;

System.out.println("disposition of "
+ being + " ="
+ disposition.orElseGet(() -> "unknown")) ;




Overview of Common Functional Interfaces: Supplier

* A Supplierreturns a value & takes no parameters, e.q.,

* public interface Supplier<T> { T get(); }

String> beingMap = new HashMap<String, String>()
"Nice"); } };

Map<String,
{ { put("Demon", '"Naughty"), put("Angel",

String being = ...; Get the name of a being from
somewhere (e.qg., prompt user)

Optional<String> disposition
Optional.ofNullable (beingMap.get (being)) ;

System.out.println("disposition of "
+ being + " ="
+ disposition.orElseGet(() -> "unknown")) ;




Overview of Common Functional Interfaces: Supplier

* A Supplierreturns a value & takes no parameters, e.q.,
* public interface Supplier<T> { T get(); }
Map<String, String> beingMap = new HashMap<String, String>()
{ { put("Demon", "Naughty"), put("Angel", "Nice"); } };

String being = , Return an optional describing the specified being
B if non-null, otherwise return an empty Optional

Optional<String> disposition
Optional.ofNullable (beingMap.get (being)) ;

System.out.println("disposition of "
+ being + " ="
+ disposition.orElseGet(() -> "unknown")) ;

See docs.oracle.com/javase/8/docs/api/java/util/Optional.html#ofNullable



https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#ofNullable-T-

Overview of Common Functional Interfaces: Supplier

* A Supplierreturns a value & takes no parameters, e.q.,

* public interface Supplier<T> { T get(); }

String> beingMap = new HashMap<String, String>()
"Nice"); } };

Map<String,
{ { put("Demon", '"Naughty"), put("Angel",

String being = ...; A container object which may or
may not contain a non-null value
Optional<String> disposition =
Optional.ofNullable (beingMap.get (being)) ;

System.out.println("disposition of "
+ being + " ="
+ disposition.orElseGet(() -> "unknown")) ;

See docs.oracle.com/javase/8/docs/api/java/util/Optional.html



https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html

Overview of Common Functional Interfaces: Supplier

* A Supplierreturns a value & takes no parameters, e.q.,

* public interface Supplier<T> { T get(); }

String> beingMap = new HashMap<String, String>()
"Nice"); } };

Map<String,
{ { put("Demon", '"Naughty"), put("Angel",

String being = ...;

Returns value if being is non-null

Optional<String> disposition
Optional.ofNullable (beingMap.get (being)) ;

System.out.println("disposition of "
+ being + " ="
+ disposition.orElseGet(() -> "unknown")) ;

See docs.oracle.com/javase/8/docs/api/java/util/Optional.html#orElseGet



https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#orElseGet-java.util.function.Supplier-

Overview of Common Functional Interfaces: Supplier

* A Supplierreturns a value & takes no parameters, e.q.,

* public interface Supplier<T> { T get(); }

String> beingMap = new HashMap<String, String>()
"Nice"); } };

Map<String,
{ { put("Demon", '"Naughty"), put("Angel",

String being = ...; Returns supplier lambda
value if being is not found

Optional<String> disposition =
Optional.ofNullable (beingMap.get (being)) ;

System.out.println("disposition of "
+ being + " ="
+ disposition.orElseGet(() -> "unknown")) ;




Overview of Common Functional Interfaces: Supplier

* A Supplierreturns a value & takes no parameters, e.q.,
* public interface Supplier<T> { T get(); }

class Optional<T> {

public T orElseGet (Supplier<? extends T> other) {
return value !'= null
? value
: other.get() ;

‘ Here's how the orElseGet() method uses the Supplier passed to it. |



Overview of Common Functional Interfaces: Supplier

* A Supplierreturns a value & takes no parameters, e.q.,
* public interface Supplier<T> { T get(); }

class Optional<T> {

() -> "unknown"

public T orElseGet (Supplier<? extends T>/;ther) {
return value != null
? value
: other.get() ;

The string literal “unknown” is bound to the supplier lambda parameter.




Overview of Common Functional Interfaces: Supplier

* A Supplierreturns a value & takes no parameters, e.q.,
* public interface Supplier<T> { T get(); }

class Optional<T> {

() -> "unknown"

public T orElseGet (Supplier<? extends T>/gther) {
return value != null
? value
: other.get() ;
} N

"unknown"

The string “unknown” returns by orElseGet() if the value is null.



Overview of Common Functional Interfaces: Supplier

» A Supplier can also be used for a zero-param constructor reference, e.g.,
* public interface Supplier<T> { T get(), }

class CrDemo implements Runnable {
String mString;

void zeroParamConstructorRef () {
Supplier<CrDemo> factory = CrDemo: :new;
CrDemo crDemo = factory.get();
crDemo.run () ;

}

@Override
void run() { System.out.println(mString); }

}

See github.com/douglascraigschmidt/LivelLessons/tree/master/Java8/ex7



http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex7

Overview of Common Functional Interfaces: Supplier

» A Supplier can also be used for a zero-param constructor reference, e.g.,
* public interface Supplier<T> { T get(), }

class CrDemo implements Runnable {
String mString;

void zeroParamConstructorRef () ({
Supplier<CrDemo> factory = CrDemo: :new;

CrDemo crDemo = factory.get(); \\\\\

crDemo.run () ;

} Create a supplier thats initialized with a zero
-param constructor reference for CrDemo

@Override
void run() { System.out.println(mString); }

}

See www.speakingcs.com/2014/08/constructor-references-in-java-8.html



http://www.speakingcs.com/2014/08/constructor-references-in-java-8.html

Overview of Common Functional Interfaces: Supplier

» A Supplier can also be used for a zero-param constructor reference, e.g.,
* public interface Supplier<T> { T get(), }

class CrDemo implements Runnable {
String mString;

void zeroParamConstructorRef () {
Supplier<CrDemo> factory = CrDemo: :new;
CrDemo crDemo = factory.get():;
crDemo.run() ;

}
get() creates a CrDemo object using a constructor

reference for the CrDemo “default” constructor:

@Override
void run() { System.out.println(mString); }




Overview of Common Functional Interfaces: Supplier

» A Supplier can also be used for a zero-param constructor reference, e.g.,
* public interface Supplier<T> { T get(), }

class CrDemo implements Runnable {
String mString;

void zeroParamConstructorRef () {
Supplier<CrDemo> factory = CrDemo: :new;
CrDemo crDemo = factory.get();

crDemo.run() ;
} \

Call a method in CrDemo to print the result

@Overridg/,//f’/////////

void run() { System.out.println(mString); }




Overview of Common Functional Interfaces: Supplier

« Constructor references simplify creation of parameterizable factory methods.
* public interface Supplier<T> { T get(), }

class CrDemo implements Runnable {

static class CrDemoEx This class extends CrDemo & overrides
extends CrDemo { its run() method to uppercase the string.

@Override
public void run() {
System.out.println (mString. toUpperCase()) ;

}
}

See www.javabrahman.com/java-8/constructor-references-java-8-simplified-tutorial



http://www.javabrahman.com/java-8/constructor-references-java-8-simplified-tutorial

Overview of Common Functional Interfaces: Supplier

« Constructor references simplify creation of parameterizable factory methods.
* public interface Supplier<T> { T get(), }

class CrDemo implements Runnable {

static class CrDemoEx
extends CrDemo {

@Override
public void run() {
System.out.println (mString. toUpperCase()) ;

3 AN

Print the uppercased value of mString




Overview of Common Functional Interfaces: Supplier

« Constructor references simplify creation of parameterizable factory methods.
* public interface Supplier<T> { T get(), }

class CrDemo implements Runnable {

void zeroParamConstructorRefEx () {

\ Demonstrate how suppliers can be used as factories
for multiple zero-param constructor references

Supplier<CrDemo> crDemoFactory = CrDemo: :new;
Supplier<CrDemoEx> crDemoFactoryEx = CrDemoEx: :new;

runDemo (crDemoFactory) ;
runDemo (crDemoFactoryEx) ;




Overview of Common Functional Interfaces: Supplier

« Constructor references simplify creation of parameterizable factory methods.
* public interface Supplier<T> { T get(), }
class CrDemo implements Runnable {

void zeroParamConstructorRefEx () {

Assign a constructor reference to a supplier that acts as
a factory for a zero-param object of CrDemo/CrDemoEx

Supplier<CrDemo> crDemoFactory = CrDemo::new;///’\
Supplier<CrDemoEx> crDemoFactoryEx = CrDemoEx: :new;

runDemo (crDemoFactory) ;
runDemo (crDemoFactoryEx) ;




Overview of Common Functional Interfaces: Supplier

« Constructor references simplify creation of parameterizable factory methods.
* public interface Supplier<T> { T get(), }

class CrDemo implements Runnable {

void zeroParamConstructorRefEx () {

Supplier<CrDemo> crDemoFactory = CrDemo: :new;
Supplier<CrDemoEx> crDemoFactoryEx = CrDemoEx: :new;

runDemo (crDemoFactory) ; - This helper method invokes the
runDemo (crDemoFactoryEx) ; given supplier to create a new

} object & call its run() method.




Overview of Common Functional Interfaces: Supplier

« Constructor references simplify creation of parameterizable factory methods.
* public interface Supplier<T> { T get(), }

class CrDemo implements Runnable {

<T extends Runnable> void runDemo (Supplier<T> factory) ({

factory.get() .run() ; \\\\\\
}

Use the given factory to create a
new object & call its run() method




Overview of Common Functional Interfaces: Supplier

« Constructor references simplify creation of parameterizable factory methods.
* public interface Supplier<T> { T get(), }

class CrDemo implements Runnable {

<T extends Runnable> void runDemo (Supplier<T> factory) ({
factory.get () .run() ;

}

This call encapsulates details of the concrete
constructor that's used to create an object!




Overview of Common Functional Interfaces: Supplier

« Arbitrary constructors with params can also be supported in Java 8, e.g.,
* public interface Supplier<T> { T get(), }

class CrDemo implements Runnable {

interface TriFactory<A, B, C, R> { R of(A a, B b, Cc); }
~.

Custom functional interfaces can be defined for arbitrary constructors with params.

void threeParamConstructorRef () {
TriFactory<String, Integer, Long, CrDemo> factory =
CrDemo: :new;

factory.of ("The answer is ", 4, 2L) .run();

}

CrDemo (String s, Integer i, Long 1)
{ mString = s + 1 + 1; }

This capability is unrelated to the Supplier interface.




Overview of Common Functional Interfaces: Supplier

« Arbitrary constructors with params can also be supported in Java 8, e.g.,
* public interface Supplier<T> { T get(), }

class CrDemo implements Runnable {
interface TriFactory<A, B, C, R> { R of(A a, B b, Cc); }

void threeParamConstructorRef () {
TriFactory<String, Integer, Long, CrDemo> factory =
CrDemo: :new;

factory.of ("The answer is ", 4, 2L) .run();

}

Create a factory that’s initialized with a three-param constructor reference

CrDemo (String s, Integer i, Long l)////
{ mString =s + i + 1; }




Overview of Common Functional Interfaces: Supplier

* Arbitrary constructors with params can also be supported in Java 8, e.g.,
* public interface Supplier<T> { T get(); }

class CrDemo implements Runnable {
interface TriFactory<A, B, C, R> { R of(A a, B b, C c); }

void threeParamConstructorRef () {
TriFactory<String, Integer, Long, CrDemo> factory =
CrDemo: :new;

factory.of ("The answer is ", 4, 2L) .run();
} \
Create/print a three-param
CrDemo (String s, Integer i, Long 1) jnstance of CrDemo

{ mString = s + 1 + 1; }







