
Java 8 Functional Interfaces

Supplier

Douglas C. Schmidt

Learning Objectives in This Lesson
• Recognize foundational functional programming features in Java 8, e.g.,

• Lambda expressions

• Method & constructor references

• Key functional interfaces

• Predicate

• Function

• BiFunction

• Supplier

Overview of
Functional Interfaces: Supplier

Douglas C. Schmidt

• A Supplier returns a value & takes no parameters, e.g.,

• public interface Supplier<T> { T get(); }

Overview of Common Functional Interfaces: Supplier

See docs.oracle.com/javase/8/docs/api/java/util/function/Supplier.html

http://docs.oracle.com/javase/8/docs/api/java/util/function/Supplier.html

• A Supplier returns a value & takes no parameters, e.g.,

• public interface Supplier<T> { T get(); }

Overview of Common Functional Interfaces: Supplier

See docs.oracle.com/javase/8/docs/api/java/util/function/Supplier.html

Supplier is a generic interface that is
parameterized by one reference type

http://docs.oracle.com/javase/8/docs/api/java/util/function/Supplier.html

• A Supplier returns a value & takes no parameters, e.g.,

• public interface Supplier<T> { T get(); }

Overview of Common Functional Interfaces: Supplier

See docs.oracle.com/javase/8/docs/api/java/util/function/Supplier.html

Its single abstract method is passed no
parameters & returns a value of type T.

http://docs.oracle.com/javase/8/docs/api/java/util/function/Supplier.html

• A Supplier returns a value & takes no parameters, e.g.,

• public interface Supplier<T> { T get(); }

Overview of Common Functional Interfaces: Supplier

Map<String, String> beingMap = new HashMap<String, String>()

{ { put("Demon", "Naughty"); put("Angel", "Nice"); } };

String being = ...;

Optional<String> disposition =

Optional.ofNullable(beingMap.get(being));

System.out.println("disposition of "

+ being + " = "

+ disposition.orElseGet(() -> "unknown"));

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex6

http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex6

• A Supplier returns a value & takes no parameters, e.g.,

• public interface Supplier<T> { T get(); }

Overview of Common Functional Interfaces: Supplier

Map<String, String> beingMap = new HashMap<String, String>()

{ { put("Demon", "Naughty"); put("Angel", "Nice"); } };

String being = ...;

Optional<String> disposition =

Optional.ofNullable(beingMap.get(being));

System.out.println("disposition of "

+ being + " = "

+ disposition.orElseGet(() -> "unknown"));

Create a hash map that associates
beings with their personality traits.

• A Supplier returns a value & takes no parameters, e.g.,

• public interface Supplier<T> { T get(); }

Overview of Common Functional Interfaces: Supplier

Map<String, String> beingMap = new HashMap<String, String>()

{ { put("Demon", "Naughty"); put("Angel", "Nice"); } };

String being = ...;

Optional<String> disposition =

Optional.ofNullable(beingMap.get(being));

System.out.println("disposition of "

+ being + " = "

+ disposition.orElseGet(() -> "unknown"));

Get the name of a being from
somewhere (e.g., prompt user)

• A Supplier returns a value & takes no parameters, e.g.,

• public interface Supplier<T> { T get(); }

Overview of Common Functional Interfaces: Supplier

Map<String, String> beingMap = new HashMap<String, String>()

{ { put("Demon", "Naughty"); put("Angel", "Nice"); } };

String being = ...;

Optional<String> disposition =

Optional.ofNullable(beingMap.get(being));

System.out.println("disposition of "

+ being + " = "

+ disposition.orElseGet(() -> "unknown"));

Return an optional describing the specified being
if non-null, otherwise return an empty Optional

See docs.oracle.com/javase/8/docs/api/java/util/Optional.html#ofNullable

https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#ofNullable-T-

• A Supplier returns a value & takes no parameters, e.g.,

• public interface Supplier<T> { T get(); }

Overview of Common Functional Interfaces: Supplier

Map<String, String> beingMap = new HashMap<String, String>()

{ { put("Demon", "Naughty"); put("Angel", "Nice"); } };

String being = ...;

Optional<String> disposition =

Optional.ofNullable(beingMap.get(being));

System.out.println("disposition of "

+ being + " = "

+ disposition.orElseGet(() -> "unknown"));

A container object which may or
may not contain a non-null value

See docs.oracle.com/javase/8/docs/api/java/util/Optional.html

https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html

• A Supplier returns a value & takes no parameters, e.g.,

• public interface Supplier<T> { T get(); }

Overview of Common Functional Interfaces: Supplier

Map<String, String> beingMap = new HashMap<String, String>()

{ { put("Demon", "Naughty"); put("Angel", "Nice"); } };

String being = ...;

Optional<String> disposition =

Optional.ofNullable(beingMap.get(being));

System.out.println("disposition of "

+ being + " = "

+ disposition.orElseGet(() -> "unknown"));

Returns value if being is non-null

See docs.oracle.com/javase/8/docs/api/java/util/Optional.html#orElseGet

https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#orElseGet-java.util.function.Supplier-

• A Supplier returns a value & takes no parameters, e.g.,

• public interface Supplier<T> { T get(); }

Overview of Common Functional Interfaces: Supplier

Map<String, String> beingMap = new HashMap<String, String>()

{ { put("Demon", "Naughty"); put("Angel", "Nice"); } };

String being = ...;

Optional<String> disposition =

Optional.ofNullable(beingMap.get(being));

System.out.println("disposition of "

+ being + " = "

+ disposition.orElseGet(() -> "unknown"));

Returns supplier lambda
value if being is not found

• A Supplier returns a value & takes no parameters, e.g.,

• public interface Supplier<T> { T get(); }

Overview of Common Functional Interfaces: Supplier

class Optional<T> {

...

public T orElseGet(Supplier<? extends T> other) {

return value != null

? value

: other.get();

}

Here’s how the orElseGet() method uses the Supplier passed to it.

The string literal “unknown” is bound to the supplier lambda parameter.

• A Supplier returns a value & takes no parameters, e.g.,

• public interface Supplier<T> { T get(); }

Overview of Common Functional Interfaces: Supplier

class Optional<T> {

...

public T orElseGet(Supplier<? extends T> other) {

return value != null

? value

: other.get();

}

() -> "unknown"

• A Supplier returns a value & takes no parameters, e.g.,

• public interface Supplier<T> { T get(); }

Overview of Common Functional Interfaces: Supplier

class Optional<T> {

...

public T orElseGet(Supplier<? extends T> other) {

return value != null

? value

: other.get();

}

"unknown"

() -> "unknown"

The string “unknown” returns by orElseGet() if the value is null.

• A Supplier can also be used for a zero-param constructor reference, e.g.,

• public interface Supplier<T> { T get(); }

Overview of Common Functional Interfaces: Supplier

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex7

class CrDemo implements Runnable {

String mString;

void zeroParamConstructorRef() {

Supplier<CrDemo> factory = CrDemo::new;

CrDemo crDemo = factory.get();

crDemo.run();

}

@Override

void run() { System.out.println(mString); }

...

}

http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex7

• A Supplier can also be used for a zero-param constructor reference, e.g.,

• public interface Supplier<T> { T get(); }

Overview of Common Functional Interfaces: Supplier

See www.speakingcs.com/2014/08/constructor-references-in-java-8.html

class CrDemo implements Runnable {

String mString;

void zeroParamConstructorRef() {

Supplier<CrDemo> factory = CrDemo::new;

CrDemo crDemo = factory.get();

crDemo.run();

}

@Override

void run() { System.out.println(mString); }

...

}

Create a supplier that’s initialized with a zero
-param constructor reference for CrDemo

http://www.speakingcs.com/2014/08/constructor-references-in-java-8.html

Overview of Common Functional Interfaces: Supplier
• A Supplier can also be used for a zero-param constructor reference, e.g.,

• public interface Supplier<T> { T get(); }

class CrDemo implements Runnable {

String mString;

void zeroParamConstructorRef() {

Supplier<CrDemo> factory = CrDemo::new;

CrDemo crDemo = factory.get();

crDemo.run();

}

@Override

void run() { System.out.println(mString); }

...

}

get() creates a CrDemo object using a constructor
reference for the CrDemo “default” constructor.

Overview of Common Functional Interfaces: Supplier
• A Supplier can also be used for a zero-param constructor reference, e.g.,

• public interface Supplier<T> { T get(); }

Call a method in CrDemo to print the result

class CrDemo implements Runnable {

String mString;

void zeroParamConstructorRef() {

Supplier<CrDemo> factory = CrDemo::new;

CrDemo crDemo = factory.get();

crDemo.run();

}

@Override

void run() { System.out.println(mString); }

...

}

Overview of Common Functional Interfaces: Supplier
• Constructor references simplify creation of parameterizable factory methods.

• public interface Supplier<T> { T get(); }

class CrDemo implements Runnable {

...

static class CrDemoEx

extends CrDemo {

@Override

public void run() {

System.out.println(mString.toUpperCase());

}

}

...

This class extends CrDemo & overrides
its run() method to uppercase the string.

See www.javabrahman.com/java-8/constructor-references-java-8-simplified-tutorial

http://www.javabrahman.com/java-8/constructor-references-java-8-simplified-tutorial

Overview of Common Functional Interfaces: Supplier
• Constructor references simplify creation of parameterizable factory methods.

• public interface Supplier<T> { T get(); }

class CrDemo implements Runnable {

...

static class CrDemoEx

extends CrDemo {

@Override

public void run() {

System.out.println(mString.toUpperCase());

}

}

...
Print the uppercased value of mString

Overview of Common Functional Interfaces: Supplier
• Constructor references simplify creation of parameterizable factory methods.

• public interface Supplier<T> { T get(); }

class CrDemo implements Runnable {

...

void zeroParamConstructorRefEx() {

Supplier<CrDemo> crDemoFactory = CrDemo::new;

Supplier<CrDemoEx> crDemoFactoryEx = CrDemoEx::new;

runDemo(crDemoFactory);

runDemo(crDemoFactoryEx);

}

...

Demonstrate how suppliers can be used as factories
for multiple zero-param constructor references

Overview of Common Functional Interfaces: Supplier
• Constructor references simplify creation of parameterizable factory methods.

• public interface Supplier<T> { T get(); }

Assign a constructor reference to a supplier that acts as
a factory for a zero-param object of CrDemo/CrDemoEx

class CrDemo implements Runnable {

...

void zeroParamConstructorRefEx() {

Supplier<CrDemo> crDemoFactory = CrDemo::new;

Supplier<CrDemoEx> crDemoFactoryEx = CrDemoEx::new;

runDemo(crDemoFactory);

runDemo(crDemoFactoryEx);

}

...

Overview of Common Functional Interfaces: Supplier
• Constructor references simplify creation of parameterizable factory methods.

• public interface Supplier<T> { T get(); }

class CrDemo implements Runnable {

...

void zeroParamConstructorRefEx() {

Supplier<CrDemo> crDemoFactory = CrDemo::new;

Supplier<CrDemoEx> crDemoFactoryEx = CrDemoEx::new;

runDemo(crDemoFactory);

runDemo(crDemoFactoryEx);

}

...

This helper method invokes the
given supplier to create a new
object & call its run() method.

Overview of Common Functional Interfaces: Supplier
• Constructor references simplify creation of parameterizable factory methods.

• public interface Supplier<T> { T get(); }

class CrDemo implements Runnable {

...

<T extends Runnable> void runDemo(Supplier<T> factory) {

factory.get().run();

}

...

Use the given factory to create a
new object & call its run() method

Overview of Common Functional Interfaces: Supplier
• Constructor references simplify creation of parameterizable factory methods.

• public interface Supplier<T> { T get(); }

class CrDemo implements Runnable {

...

<T extends Runnable> void runDemo(Supplier<T> factory) {

factory.get().run();

}

...

This call encapsulates details of the concrete
constructor that’s used to create an object!

Overview of Common Functional Interfaces: Supplier
• Arbitrary constructors with params can also be supported in Java 8, e.g.,

• public interface Supplier<T> { T get(); }

class CrDemo implements Runnable { ...

interface TriFactory<A, B, C, R> { R of(A a, B b, C c); }

void threeParamConstructorRef() {

TriFactory<String, Integer, Long, CrDemo> factory =

CrDemo::new;

factory.of("The answer is ", 4, 2L).run();

}

CrDemo(String s, Integer i, Long l)

{ mString = s + i + l; } ...

Custom functional interfaces can be defined for arbitrary constructors with params.

This capability is unrelated to the Supplier interface.

Overview of Common Functional Interfaces: Supplier
• Arbitrary constructors with params can also be supported in Java 8, e.g.,

• public interface Supplier<T> { T get(); }

class CrDemo implements Runnable { ...

interface TriFactory<A, B, C, R> { R of(A a, B b, C c); }

void threeParamConstructorRef() {

TriFactory<String, Integer, Long, CrDemo> factory =

CrDemo::new;

factory.of("The answer is ", 4, 2L).run();

}

CrDemo(String s, Integer i, Long l)

{ mString = s + i + l; } ...

Create a factory that’s initialized with a three-param constructor reference

Overview of Common Functional Interfaces: Supplier
• Arbitrary constructors with params can also be supported in Java 8, e.g.,

• public interface Supplier<T> { T get(); }

class CrDemo implements Runnable { ...

interface TriFactory<A, B, C, R> { R of(A a, B b, C c); }

void threeParamConstructorRef() {

TriFactory<String, Integer, Long, CrDemo> factory =

CrDemo::new;

factory.of("The answer is ", 4, 2L).run();

}

CrDemo(String s, Integer i, Long l)

{ mString = s + i + l; } ...

Create/print a three-param
instance of CrDemo

