Reactive Programming &

Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Professor of Computer Science

Institute for Software
Integrated Systems

Vanderbilt University
Nashuille, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Lesson

« Understand the relationship between reactive
programming & Java completable futures Responsive

Message-
driven

Overview of Reactive
Programming

Overview of Reactive Programming

« Reactive programming is an asynchronous programming paradigm concerned
with processing data streams & propagation of changes

See en.wikipedia.org/wiki/Reactive :)rogrammingll

https://en.wikipedia.org/wiki/Reactive_programming

Overview of Reactive Programming

« Reactive programming is based on four key principles

Responsive

Message-
driven

See Www. reactivemanifesto.orgll

http://www.reactivemanifesto.org/

Overview of Reactive Programming

« Reactive programming is based on four key principles, e.q.
 Responsive

 Provide rapid & consistent response
times

Establish reliable upper bounds to deliver
consistent quality of service & prevent delays

See en.wikipedia.org/wiki/Responsiveness

https://en.wikipedia.org/wiki/Responsiveness

Overview of Reactive Programming
» Reactive programming is based on four key principles, e.g.

 Resilient

« The system remains g o oo
responsive, even in
the face of failure

Failure of some operations should
not bring the entire system down

See en.wikipedia.org/wiki/Resilience (network)

https://en.wikipedia.org/wiki/Resilience_(network)

Overview of Reactive Programming
» Reactive programming is based on four key principles, e.g.

It should be possible to o~
‘auto-scale” performance

« Elastic

« A system should remain
responsive, even under
varying workload

See en.wikipedia.org/wiki/Autoscaling

https://en.wikipedia.org/wiki/Autoscaling

Overview of Reactive Programming
» Reactive programming is based on four key principles, e.g.

This principle is an “implementation detail” wrt the others..

« Message-driven

« Asynchronous message-passing
ensures loose coupling, isolation,
& location transparency between ‘
components »

See en.wikipedia.org/wiki/Message-oriented middleware |

https://en.wikipedia.org/wiki/Message-oriented_middleware

Reactive Programming &
Java Completable Futures

10

Reactive Programming & Java Completable Futures

 Java completable futures map onto key reactive programming principles, e.g.
 Responsive CALLER CALLEE

- Avoid blocking in user code i searchForword,
« Blocking underutilizes cores, impedes i ____returnresult,
inherent parallelism, & complicates ;
program structure | searchForwor d, !
: return result,
A e L P,
i searchForWord;
i return return3 |:|
) R R e S

See www.ibm.com/developerworks/library/j-ivmc3

http://www.ibm.com/developerworks/library/j-jvmc3

Reactive Programming & Java Completable Futures

 Java completable futures map onto key reactive programming principles, e.g.
- Responsive Completion stage methods

 Avoid blocking in user code

« Blocking underutilizes cores, impedes
inherent parallelism, & complicates
program structure

Factory, completion stage, 9
& arbitrary-arity methods Exception
avoid blocking threads methods

Factory
methods

Arbitrary-
arity methods

Basic methods

12

Reactive Programming & Java Completable Futures

- Java completable futures map onto key reactive piag
- Responsive i y

» Avoid changing threads

« Incurs excessive overhead
wrt synchronization, context
switching, & memory/cache
management

Iaprinciples, e.qg.

See gee.cs.oswedgo.edu/dl/papers/fj.

hdf

http://gee.cs.oswego.edu/dl/papers/fj.pdf

Reactive Programming & Java Completable Futures

 Java completable futures map onto key reactive programming principles, e.g.

Deque

- Responsive Deque Deque
Sub-Task, ,
I I b- Ky,
- Avoid changing threads Sub-Tasks
. Sub-Task,
« Incurs excessive overhead Sl
wrt synchronization, context Sub-Task;, | | Sub-Task,, |

switching, & memory/cache
management

The fork-join pool &
non-*Async() methods
avoid changing threads

See gee.cs.oswego.edu/dl/pa

hers/fj.

hdf

http://gee.cs.oswego.edu/dl/papers/fj.pdf

Reactive Programming & Java Completable Futures

 Java completable futures map onto key reactive programming principles, e.g.

Deque Deque Deque
* Resilient Sl EEL G
- Sub-Task;
« Exception methods make more R
programs resilient to failures Sub-Task, 5 Sub-Tasks
Sub-Task, 4 Sub-Task; ,
Exceptions decouple f |
error processing from -
normal operations 4
2 Pool of worker thre2®

However, completable futures are localized to a single process, rnot a cluster!

Reactive Programming & Java Completable Futures

 Java completable futures map onto key reactive programming principles, e.g.

« Elastic

» Async computations can run
scalably in a pool of threads

atop a set of cores

Can be a (common) fork-join
pool or a custom thread pool

Deque Deque Deque
Sub-Task; ;
Sub-Task; ,
Sub-Task, 5 Sub-Taskg 5
Sub-Task, 4 Sub-Task, , __ Sub-Task; 4

e rrrY

Reactive Programming & Java Completable Futures

 Java completable futures map onto key reactive programming principles, e.g.
Deque Deque Deque

Sub-Task; ,

Sub-Task; 5 Sub-Task; 5

« Message-driven

« The Java fork-join pool passes
messages between threads in
the pool internally

SUb-TaSkl4 SUb-TaSk34

Java’s fork-join pool implements _—

S
"work-stealing” between deques - Pool of worker th\'ea‘6

See en.wikipedia.org/wiki/Work stealing

https://en.wikipedia.org/wiki/Work_stealing

Reactive Programming
& Java Reactive Streams

18

Reactive Programming & Java Reactive Streams

 Java 9 support reactive programming via “Reactive Streams” & the Flow API

Class Flow

java.lang.Object
java.util.concurrent.Flow

public final class Flow
extends Object

Interrelated interfaces and static methods for establishing flow-controlled
components in which Publishers produce items consumed by one or more
Subscribers, each managed by a Subscription.

These interfaces correspond to the reactive-streams specification. They apply in
both concurrent and distributed asynchronous settings: All (seven) methods are
defined in void "one-way" message style. Communication relies on a simple form
of flow control (method Flow.Subscription.request(long)) that can be used to
avoid resource management problems that may otherwise occur in "push" based
systems.

See community.oracle.com/docs/DOC-1006738

https://community.oracle.com/docs/DOC-1006738

Reactive Programming & Java Reactive Streams

 Java 9 support reactive programming via “Reactive Streams” & the Flow API
« Adds support for stream-oriented pub/sub patterns

Inform how many items

"7 “subscriber is willing to accept === Control

Subscriber Data

Send acceptable
number of items

See javasampleapproach.com/java/java-9/java-9-flow-api-example-publisher-and-subscriber

http://javasampleapproach.com/java/java-9/java-9-flow-api-example-publisher-and-subscriber

Reactive Programming & Java Reactive Streams
 Java 9 support reactive programming via “Reactive Streams” & the Flow API

Inform how many items

"7 “subscriber is willing to accept === Control

Subscriber Data

Send acceptable
number of items

« Combines two patterns
« [Iterator, which applies a pull model where apps pulls items from a source

« Observer, which applies a push model that reacts when item is pushed
from a source to a subscriber

See www.journaldev.com/20723/java-9-reactive-streams

http://www.journaldev.com/20723/java-9-reactive-streams

Reactive Programming & Java Reactive Streams

 Java 9 support reactive programming via “Reactive Streams” & the Flow API

Inform how many items

"7 “subscriber is willing to accept === Control

Subscriber » Data

Send acceptable
. —_—
number of items

« Intended as an interoperable
foundation for other reactive
programming frameworks

See www.baeldung.com/iava-9-reactive-streams

http://www.baeldung.com/java-9-reactive-streams

Reactive Programming & Java Reactive Streams

« Comparing reactive programming with other Java programming paradigms

-ve Progra,
Ct,ve Ih,,, .
/),

p?

9
'..% 3 Streams Reactive Streams
ERY (& Streams +

= CompletableFutures)
)

o2 - Completable

.(% S Objects Futures

Asynchronous

Synchronous

23

End of Reactive
Programming & Java
Completable Futures

24

