
Reactive Programming &

Java Completable Futures

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Responsive

Resilient

Message-
driven

Elastic

Learning Objectives in this Lesson
• Understand the relationship between reactive

programming & Java completable futures

3

Overview of Reactive
Programming

4

• Reactive programming is an asynchronous programming paradigm concerned
with processing data streams & propagation of changes

Overview of Reactive Programming

See en.wikipedia.org/wiki/Reactive_programming

https://en.wikipedia.org/wiki/Reactive_programming

5

Responsive

Resilient

Message-
driven

Elastic

• Reactive programming is based on four key principles

Overview of Reactive Programming

See www.reactivemanifesto.org

http://www.reactivemanifesto.org/

6

• Reactive programming is based on four key principles, e.g.

• Responsive

• Provide rapid & consistent response
times

Overview of Reactive Programming

Establish reliable upper bounds to deliver
consistent quality of service & prevent delays

See en.wikipedia.org/wiki/Responsiveness

https://en.wikipedia.org/wiki/Responsiveness

7

• Reactive programming is based on four key principles, e.g.

• Responsive

• Resilient

• The system remains
responsive, even in
the face of failure

Overview of Reactive Programming

Failure of some operations should
not bring the entire system down

See en.wikipedia.org/wiki/Resilience_(network)

https://en.wikipedia.org/wiki/Resilience_(network)

8

• Reactive programming is based on four key principles, e.g.

• Responsive

• Resilient

• Elastic

• A system should remain
responsive, even under
varying workload

Overview of Reactive Programming

It should be possible to
“auto-scale” performance

See en.wikipedia.org/wiki/Autoscaling

https://en.wikipedia.org/wiki/Autoscaling

9

• Reactive programming is based on four key principles, e.g.

• Responsive

• Resilient

• Elastic

• Message-driven

• Asynchronous message-passing
ensures loose coupling, isolation,
& location transparency between
components

Overview of Reactive Programming

See en.wikipedia.org/wiki/Message-oriented_middleware

This principle is an “implementation detail” wrt the others..

https://en.wikipedia.org/wiki/Message-oriented_middleware

10

Reactive Programming &
Java Completable Futures

11

• Java completable futures map onto key reactive programming principles, e.g.

• Responsive

• Avoid blocking in user code

• Blocking underutilizes cores, impedes
inherent parallelism, & complicates
program structure

See www.ibm.com/developerworks/library/j-jvmc3

CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3

Reactive Programming & Java Completable Futures

http://www.ibm.com/developerworks/library/j-jvmc3

12

Exception
methods

Completion stage methods

Factory
methodsArbitrary-

arity methods

Basic methods

• Java completable futures map onto key reactive programming principles, e.g.

• Responsive

• Avoid blocking in user code

• Blocking underutilizes cores, impedes
inherent parallelism, & complicates
program structure

Reactive Programming & Java Completable Futures

Factory, completion stage,
& arbitrary-arity methods
avoid blocking threads

13

• Java completable futures map onto key reactive programming principles, e.g.

• Responsive

• Avoid blocking in user code

• Avoid changing threads

• Incurs excessive overhead
wrt synchronization, context
switching, & memory/cache
management

See gee.cs.oswego.edu/dl/papers/fj.pdf

Reactive Programming & Java Completable Futures

http://gee.cs.oswego.edu/dl/papers/fj.pdf

14

• Java completable futures map onto key reactive programming principles, e.g.

• Responsive

• Avoid blocking in user code

• Avoid changing threads

• Incurs excessive overhead
wrt synchronization, context
switching, & memory/cache
management

See gee.cs.oswego.edu/dl/papers/fj.pdf

Reactive Programming & Java Completable Futures

Sub-Task1.1

Sub-Task1.2

Sub-Task1.3 Sub-Task3.3

Sub-Task3.4Sub-Task2.4

Deque Deque Deque

Sub-Task1.4

The fork-join pool &
non-*Async() methods
avoid changing threads

http://gee.cs.oswego.edu/dl/papers/fj.pdf

15

• Java completable futures map onto key reactive programming principles, e.g.

• Responsive

• Resilient

• Exception methods make more
programs resilient to failures

Reactive Programming & Java Completable Futures

Sub-Task1.1

Sub-Task1.2

Sub-Task1.3 Sub-Task3.3

Sub-Task3.4Sub-Task2.4

Deque Deque Deque

Sub-Task1.4

However, completable futures are localized to a single process, not a cluster!

Exceptions decouple
error processing from

normal operations

16

• Java completable futures map onto key reactive programming principles, e.g.

• Responsive

• Resilient

• Elastic

• Async computations can run
scalably in a pool of threads
atop a set of cores

Reactive Programming & Java Completable Futures

Can be a (common) fork-join
pool or a custom thread pool

Sub-Task1.1

Sub-Task1.2

Sub-Task1.3 Sub-Task3.3

Sub-Task3.4Sub-Task2.4

Deque Deque Deque

Sub-Task1.4

17

• Java completable futures map onto key reactive programming principles, e.g.

• Responsive

• Resilient

• Elastic

• Message-driven

• The Java fork-join pool passes
messages between threads in
the pool internally

Reactive Programming & Java Completable Futures

Java’s fork-join pool implements
“work-stealing” between deques

See en.wikipedia.org/wiki/Work_stealing

Sub-Task1.2

Sub-Task1.3

Sub-Task1.1

Sub-Task3.3

Sub-Task3.4

Deque Deque

Sub-Task1.4

Deque

https://en.wikipedia.org/wiki/Work_stealing

18

Reactive Programming
& Java Reactive Streams

19

• Java 9 support reactive programming via “Reactive Streams” & the Flow API

See community.oracle.com/docs/DOC-1006738

Reactive Programming & Java Reactive Streams

https://community.oracle.com/docs/DOC-1006738

20

• Java 9 support reactive programming via “Reactive Streams” & the Flow API

• Adds support for stream-oriented pub/sub patterns

See javasampleapproach.com/java/java-9/java-9-flow-api-example-publisher-and-subscriber

Reactive Programming & Java Reactive Streams

http://javasampleapproach.com/java/java-9/java-9-flow-api-example-publisher-and-subscriber

21

• Java 9 support reactive programming via “Reactive Streams” & the Flow API

• Adds support for stream-oriented pub/sub patterns

• Combines two patterns

• Iterator, which applies a pull model where apps pulls items from a source

• Observer, which applies a push model that reacts when item is pushed
from a source to a subscriber

See www.journaldev.com/20723/java-9-reactive-streams

Reactive Programming & Java Reactive Streams

http://www.journaldev.com/20723/java-9-reactive-streams

22

• Java 9 support reactive programming via “Reactive Streams” & the Flow API

• Adds support for stream-oriented pub/sub patterns

• Combines two patterns

• Intended as an interoperable
foundation for other reactive
programming frameworks

See www.baeldung.com/java-9-reactive-streams

Reactive Programming & Java Reactive Streams

http://www.baeldung.com/java-9-reactive-streams

23

• Comparing reactive programming with other Java programming paradigms

Reactive Programming & Java Reactive Streams

S
in

g
le

v
a

lu
e

M
u

lt
ip

le

v
a

lu
e

s

Synchronous Asynchronous

Objects

Streams

Completable
Futures

Reactive Streams
(& Streams +

CompletableFutures)

24

End of Reactive
Programming & Java
Completable Futures

