The Java Fork-Join Pool:

Douglas C. Schmidt
i.schmidt@uanderbiit.edu
www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software
E 7 Integrated Systems
Vanderhilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

Interface ForkjJoinPool.ManagedBlocker

« Recognize how the ManagedBlocker Enctosing clase:
interface helps avoid starvation & ForkJoinPool
improve performance

public static interface ForkJoinPool.ManagedBlocker

Interface for extending managed parallelism for tasks
running in ForkJoinPools.

A ManagedBlocker provides two methods. Method
isReleasable() must return true if blocking is not
necessary. Method block() blocks the current thread if
necessary (perhaps internally invoking isReleasable before
actually blocking). These actions are performed by any thread
invoking ForkJoinPool.managedBlock (ManagedBlocker).
The unusual methods in this API accommodate synchronizers
that may, but don't usually, block for long periods. Similarly,
they allow more efficient internal handling of cases in which
additional workers may be, but usually are not, needed to
ensure sufficient parallelism. Toward this end,
implementations of method isReleasable must be amenable
to repeated invocation.

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

Overview of the
ManagedBlocker Interface

Overview of the ManagedBlocker Interface

« The Java fork-join framework is largely
designed for tasks that “run to completion”

without blocking

See en.wiki

pedia.org/wiki/Run_to_com

pletion schedulinng

https://en.wikipedia.org/wiki/Run_to_completion_scheduling

Overview of the ManagedBlocker Interface

° ManagedBIocker handles cases where | Interface ForkjoinPool.ManagedBlocker
more worker threads may be needed |ccoe.
to ensure liveness/responsiveness for | foreinteol
blocking operations

public static interface ForkJoinPool.ManagedBlocker

Interface for extending managed parallelism for tasks running in
ForkJoinPools.

A ManagedBlocker provides two methods. Method isReleasable()
must return true if blocking is not necessary. Method block() blocks
the current thread if necessary (perhaps internally invoking
isReleasable before actually blocking). These actions are performed
by any thread invoking
ForkJoinPool.managedBlock(ManagedBlocker). The unusual methods
in this API accommodate synchronizers that may, but don't usually,
block for long periods. Similarly, they allow more efficient internal
handling of cases in which additional workers may be, but usually are
not, needed to ensure sufficient parallelism. Toward this end,
implementations of method isReleasable must be amenable to
repeated invocation.

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

Overview of the ManagedBlocker Interface

° ManagedBIocker handles cases where | Interface ForkjoinPool.ManagedBlocker
more worker threads may be needed | ... cese.
to ensure liveness/responsiveness for | foreinteol

blocking operations o _
public static interface ForkJoinPool.ManagedBlocker

* e . g y tO a UtOmatlca I IY/ tem pO ra rl Iy Interface for fxtending managed parallelism for tasks running in
. . . . ForkJoinPools.
increase common fork/join pool size

A ManagedBlocker provides two methods. Method isReleasable()
must return true if blocking is not necessary. Method block() blocks
the current thread if necessary (perhaps internally invoking
isReleasable before actually blocking). These actions are performed
by any thread invoking
ForkJoinPool.managedBlock(ManagedBlocker). The unusual methods
in this API accommodate synchronizers that may, but don't usually,
block for long periods. Similarly, they allow more efficient internal

FOR THE HOLIDAY SEASON

L @
handling of cases in which additional workers may be, but usually are
not, needed to ensure sufficient parallelism. Toward this end,
implementations of method isReleasable must be amenable to
repeated invocation.

Overview of the ManagedBlocker Interface

» ForkJoinPool reclaims threads
during periods of non-use &
reinstates them on later use

Overview of the ManagedBlocker Interface

» ForkJoinPool reclaims threads
during periods of non-use &
reinstates them on later use

« It also tries to create or activate
threads to ensure the target level
of parallelism is met

Controller Plant

Feedback

S
\4 Pool of worker th\’ead,/’”

8

Overview of the ManagedBlocker Interface

- ManagedBlocker defines two methods interface ManagedBlocker {
boolean isReleasable() ;

boolean block() ;
}

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

Overview of the ManagedBlocker Interface

- ManagedBlocker defines two methods interface ManagedBlocker {
« Returns true if blocking is unnecessary = Poolean isReleasable();

boolean block() ;
}

e.g., was able to acquire a lock
or a message without blocking

10

Overview of the ManagedBlocker Interface

- ManagedBlocker defines two methods interface ManagedBlocker {
boolean isReleasable() ;

* Possibly blocks the calling thread boolean block () ;
}

e.g., waiting for a
lock or 1/O operation

11

Overview of the ManagedBlocker Interface

- ManagedBlocker defines two methods interface ManagedBlocker {
boolean isReleasable() ;
* Possibly blocks the calling thread boolean block () ;

« Returns true if no additional }
blocking is necessary

l.e., If isReleasable()
would return true

12

How the Java Fork-Join Pool
Applies ManagedBlocker

13

How the Java Fork-Join Pool Applies ManagedBlocker

« The ForkJoinPool class uses a ManagedBlocker internally

class ForkJoinPool extends AbstractExecutorService {
static void managedBlock (ManagedBlocker blocker) ({

while (!'blocker.isReleasable()) {
if (p.tryCompensate(p.ctl)) {
do {}
while ('blocker.isReleasable ()
&& 'blocker.block());

See openjdk/7-b147/java/util/concurrent/ForkJoinPool.java

http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/7-b147/java/util/concurrent/ForkJoinPool.java

How the Java Fork-Join Pool Applies ManagedBlocker

« The ForkJoinPool class uses a ManagedBlocker internally

class ForkJoinPool extends AbstractExecutorService {
static void managedBlock (ManagedBlocker blocker) ({

while (!'blocker.isReleasable()) {

if (p.tryCompensate(p.ctl)) ({ This method activates a
- spare thread to ensure
do {} sufficient parallelism while
while (!'blocker.isReleasable() calling thread is blocked

&& 'blocker.block()) ;

See openjdk/7-b147/java/util/concurrent/ForkJoinPool.java

http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/7-b147/java/util/concurrent/ForkJoinPool.java

How the Java Fork-Join Pool Applies ManagedBlocker

« The ForkJoinPool class uses a ManagedBlocker internally

class ForkJoinPool extends AbstractExecutorService {

static void managedBlock (ManagedBlocker blocker) ({

while (!'blocker.isReleasable()) { If there aren’t enough live
if (p.tryCompensate(p.ctl)) ({ threads, create or re-activate a
o spare thread to compensate for
do {} blocked joiners 'til they unblock

while ('blocker.isReleasable ()
&& 'blocker.block());

16

How the Java Fork-Join Pool Applies ManagedBlocker

« The ForkJoinPool class uses a ManagedBlocker internally

class ForkJoinPool extends AbstractExecutorService {
static void managedBlock (ManagedBlocker blocker) ({

while (!'blocker.isReleasable()) {
if (p.tryCompensate(p.ctl)) {
do {}
while ('blocker.isReleasable ()
&& 'blocker.block());

} o \ Potentially block

the calling thread

17

End of the Java Fork-
Join Pool: the Managed
Blocker Interface

18

