The Android Linux Kernel (Part 1):
Primary & Secondary Storage Mechanisms

Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software Integrated Systems
Vanderbilt University
Nashville, Tennessee, USA
1. Recognize the two types of storage supported by Android Linux: *primary* & *secondary storage*
Overview of Android Linux
Primary & Secondary Storage Mechanisms
• Android’s software instructions & data reside in two different types of storage

See en.wikipedia.org/wiki/Computer_data_storage
Android’s software instructions & data reside in two different types of storage

- **Primary storage** – Fast random access memory (RAM)

See en.wikipedia.org/wiki/Computer_data_storage#Primary_storage
• Android’s software instructions & data reside in two different types of storage

• **Primary storage** – Fast random access memory (RAM)
 • The contents of volatile RAM are wiped out whenever a device is rebooted or loses power

See en.wikipedia.org/wiki/Volatile_memory
Android’s software instructions & data reside in two different types of storage:

- **Primary storage** – Fast random access memory (RAM)
- **Secondary storage** – Slower flash memory

See en.wikipedia.org/wiki/Computer_data_storage#Secondary_storage
Android Linux Kernel: Primary & Secondary Storage

- Android’s software instructions & data reside in two different types of storage
 - **Primary storage** – Fast random access memory (RAM)
 - **Secondary storage** – Slower flash memory
 - Flash is persistent storage that can be erased & reprogrammed electronically

See en.wikipedia.org/wiki/Flash_memory
Primary & secondary storage are part of a “memory hierarchy”

See en.wikipedia.org/wiki/Memory_hierarchy
In general, being “higher” in this hierarchy has several implications.
In general, being “higher” in this hierarchy has several implications, e.g.

- Memory bandwidth is faster
 - i.e., rate at which data can be read from or stored into

See en.wikipedia.org/wiki/Memory_bandwidth
In general, being “higher” in this hierarchy has several implications, e.g.

- Memory bandwidth is faster

- CPU access latency is lower

 - i.e., time interval between when CPU initiates a call for fetch or store data & when the call completes

See en.wikipedia.org/wiki/Access_time
In general, being “higher” in this hierarchy has several implications, e.g.

- Memory bandwidth is faster
- CPU access latency is lower
- Cost is greater
 - i.e., “faster” == “costlier”

Processors cores operate on instructions & their associated data that reside in RAM.

See en.wikipedia.org/wiki/Central_processing_unit#Operation
- Processor cores operate on instructions & their associated data that reside in RAM
- Android Linux executes in kernel space RAM

See www.linfo.org/kernel_space.html
• Processor cores operate on instructions & their associated data that reside in RAM
• Android Linux executes in kernel space RAM
 • Kernel space is a protected region of RAM for running privileged operations

See en.wikipedia.org/wiki/CPU_modes
• Processor cores operate on instructions & their associated data that reside in RAM
• Android Linux executes in kernel space RAM
 • Kernel space is a protected region of RAM for running privileged operations
 • Kernel space can be accessed by user processes only via system calls

See en.wikipedia.org/wiki/System_call
• Processor cores operate on instructions & their associated data that reside in RAM
 • Android Linux executes in kernel space RAM
 • All Android apps execute in user space RAM

See en.wikipedia.org/wiki/User_space
Processor cores operate on instructions & their associated data that reside in RAM
- Android Linux executes in kernel space RAM
- All Android apps execute in user space RAM
 - User space is a more restrictive protection domain than kernel space

See www.linfo.org/user_space.html
Processor cores operate on instructions & their associated data that reside in RAM

- Android Linux executes in kernel space RAM
- All Android apps execute in user space RAM
 - User space is a more restrictive protection domain than kernel space
 - Apps running in user space normally can’t access RAM of other apps, unless explicitly allowed

See “anonymous shared memory” discussion in part 3 of this lesson
The cost & performance of primary & secondary storage has improved substantially in recent years.

See en.wikipedia.org/wiki/Random-access_memory#Recent_developments
• Primary storage (RAM) on Android mobile devices is constrained

See developer.android.com/training/articles/memory.html
Primary storage (RAM) on Android mobile devices is constrained, e.g.:

- Form factor

In 2017 2-4 GB is common for mobile devices versus 8-64 GB on a desktop or laptop.
• Primary storage (RAM) on Android mobile devices is constrained, e.g.
 • Form factor
 • Price points

Lower cost mobile devices typically have much less RAM than higher cost devices
• (Android) Linux’s virtual memory manager features address memory constraints

See en.wikipedia.org/wiki/Virtual_memory
(Android) Linux’s virtual memory manager features address memory constraints, e.g.

- Helps conserve RAM by not moving app instructions & data from secondary to primary storage until they are accessed

See en.wikipedia.org/wiki/Demand_paging
(Android) Linux’s virtual memory manager features address memory constraints, e.g.

- Helps conserve RAM by not moving app instructions & data from secondary to primary storage until they are accessed
- Accelerates I/O operations via memory mapping of files & hardware devices

See en.wikipedia.org/wiki/Memory-mapped_file
(Android) Linux’s virtual memory manager features address memory constraints, e.g.

- Helps conserve RAM by not moving app instructions & data from secondary to primary storage until they are accessed
- Accelerates I/O operations via memory mapping of files & hardware devices
- Protects an app’s private data in RAM from other apps

See en.wikipedia.org/wiki/Memory_management_unit
Secondary storage in Android Linux is used to save data persistently.

<table>
<thead>
<tr>
<th>Mechanisms</th>
<th>Persistent Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared Preferences</td>
<td>Store private primitive data in key-value pairs</td>
</tr>
<tr>
<td>External Storage</td>
<td>Store public data on the shared external storage</td>
</tr>
<tr>
<td>Internal Storage</td>
<td>Store private data on the device memory</td>
</tr>
<tr>
<td>SQLite Databases</td>
<td>Store structured data in a private database</td>
</tr>
</tbody>
</table>

See developer.android.com/guide/topics/data/data-storage.html
- Secondary storage in Android Linux is used to save data persistently

<table>
<thead>
<tr>
<th>Mechanisms</th>
<th>Persistent Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared Preferences</td>
<td>Store private primitive data in key-value pairs</td>
</tr>
<tr>
<td>External Storage</td>
<td>Store public data on the shared external storage</td>
</tr>
<tr>
<td>Internal Storage</td>
<td>Store private data on the device memory</td>
</tr>
<tr>
<td>SQLite Databases</td>
<td>Store structured data in a private database</td>
</tr>
</tbody>
</table>
Secondary storage in Android Linux is used to save data persistently.

<table>
<thead>
<tr>
<th>Mechanisms</th>
<th>Persistent Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared Preferences</td>
<td>Store private primitive data in key-value pairs</td>
</tr>
<tr>
<td>External Storage</td>
<td>Store public data on the shared external storage</td>
</tr>
<tr>
<td>Internal Storage</td>
<td>Store private data on the device memory</td>
</tr>
<tr>
<td>SQLite Databases</td>
<td>Store structured data in a private database</td>
</tr>
</tbody>
</table>
Secondary storage in Android Linux is used to save data persistently.

<table>
<thead>
<tr>
<th>Mechanisms</th>
<th>Persistent Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared Preferences</td>
<td>Store private primitive data in key-value pairs</td>
</tr>
<tr>
<td>External Storage</td>
<td>Store public data on the shared external storage</td>
</tr>
<tr>
<td>Internal Storage</td>
<td>Store private data on the device memory</td>
</tr>
<tr>
<td>SQLite Databases</td>
<td>Store structured data in a private database</td>
</tr>
</tbody>
</table>
Secondary storage in Android Linux is used to save data persistently.

<table>
<thead>
<tr>
<th>Mechanisms</th>
<th>Persistent Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared Preferences</td>
<td>Store private primitive data in key-value pairs</td>
</tr>
<tr>
<td>External Storage</td>
<td>Store public data on the shared external storage</td>
</tr>
<tr>
<td>Internal Storage</td>
<td>Store private data on the device memory</td>
</tr>
<tr>
<td>SQLite Databases</td>
<td>Store structured data in a private database</td>
</tr>
</tbody>
</table>
Android Linux supports secondary storage via its Virtual File System (VFS) framework.
Android Linux supports secondary storage via its Virtual File System (VFS) framework.

- Each file system is implemented via a kernel module that registers the operations that it supports with VFS.

See en.wikipedia.org/wiki/Loadable_kernel_module
Android Linux supports secondary storage via its Virtual File System (VFS) framework.

- Each file system is implemented via a kernel module that registers the operations that it supports with VFS.

- Android Linux file systems support “flash memory” files that can be erased/reprogrammed electronically.

See en.wikipedia.org/wiki/Flash_memory
End of the Android Linux Kernel: (Part 1) Primary & Secondary Storage Mechanisms