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Learning Objectives in this Lesson

 Evaluate the pros & cons of Java 8
parallel streams




Pros of Java 8
Parallel Streams




Pros of Java 8 Parallel Streams

« The Java 8 streams framework simplifies
parallel programming by shielding
developers from details of splitting,
applying, & combining results
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Pros of Java 8 Parallel Streams

Parallel stream implementations are often __Tnput Strings to Search

(much) faster & more scalable than sequential . . . .

(stream & loops) implementations
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Starting SearchStreamGangTest

PARALLEL_SPLITERATOR executed in 409 msecs
COMPLETABLE_FUTURES_INPUTS executed in 426 msecs
COMPLETABLE_FUTURES_PHASES executed in 427 msecs
PARALLEL_STREAMS executed in 437 msecs

PARALLEL STREAM_ PHASES executed in 440 msecs

PARALLEL STREAM_INPUTS executed in 802 msecs
RXJAVA INPUTS executed in 866 msecs

Ending SearchStreamGangTest




Pros of Java 8 Parallel Streams

« The performance speedup is a largely a
function of the partitioning strategy for

the input (N), the amount of work
performed (Q), & the # of cores

The NQ model

« Vs the # of data elements
to process per thread

« Q guantifies how CPU-
intensive the processing is
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Pros of Java 8 Parallel Streams

« Apps often don't need explicit synchronization or threading

Alleviates many accidental & inherent complexities of concurrency/parallelism




Pros of Java 8 Parallel Streams

« Apps often don’t need explicit synchronization or threading

Java class library handles locking needed to protect shared mutable state




Pros of Java 8 Parallel Streams

« Streams ensures that the structure of sequential & parallel code is the same

List<List<SearchResults>> List<List<SearchResults>>
processStream() ({ processStream() {
return getInput() return getInput ()
.stream/() .parallelStream()
.map (this: :processInput) .map (this: :processInput)
.collect (toList()) ; .collect (toList()) ;

Converting sequential to parallel streams only require minuscule changes!




Pros of Java 8 Parallel Streams
« Streams ensures that the structure of sequential & parallel code is the same

List<SearchResults> results = List<SearchResults> results =

mPhrasesToFind mPhrasesToFind
.parallelStream() .parallelStream ()

.map (phase -> .map (phase ->

searchForPhrase(..., searchForPhrase(.. .,

false)) true))
.filter (not (SearchResults .filter (not (SearchResults
: :isEmpty)) : :isEmpty))

.collect(toList()) ; .collect (toList()) ;

Converting sequential to parallel streams only require minuscule changes!




Pros of Java 8 Parallel Streams

« Examples show synergies between functional & object-oriented programming
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Pros of Java 8 Parallel Streams
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Pros of Java 8 Parallel Streams

« Implementing object-oriented hook <<Java Class>>
methods with functional programming © SearchWithParallelStreams

features he|pS to close gap between = processStream():List<List<SearchResults>>

domain intent & computations m processinput(CharSequence):List<SearchResults>

J

(getInput()
.parallelStream()

.map (this: :processInput)
.collect(toList());

return mPhrasesToFind
.parallelStream()
.map (phrase -> searchForPhrase (phrase, input, title, false))
.filter (not (SearchResults: :isEmpty)
.collect(toList()) ;

13



Cons of Java 8
Parallel Streams
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Cons of Java 8 Parallel Streams

* There are some limitations with Java 8 parallel streams

The Java 8 parallel streams framework is not all unicorns & rainbows!!




Cons of Java 8 Parallel Streams

» There are some limitations with Java 8 parallel streams, e.q.

» Some problems can't be expressed
via the “split-apply-combine” model

trySplit()

trySp

DataSource, 4

Process
guentially

Process
sequentially

See dzone.com/articles/whats-wrong-java-8-part-iii



https://dzone.com/articles/whats-wrong-java-8-part-iii

Cons

of Java 8 Parallel Streams

* There are some limitations with Java 8 parallel streams, e.g.

« If behaviors aren’t thread-safe

: , S
race conditions may occur Thread, l

Thread,
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Race conditions occur when a program
depends on the sequence or timing
of threads for it to operate properly

Shared State

See en.wiki

pedia.org/wiki/Race condition#Software



https://en.wikipedia.org/wiki/Race_condition#Software

Cons of Java 8 Parallel Streams

» There are some limitations with Java 8 parallel streams, e.q.

« Parallel spliterators may be tricky...
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Cons of Java 8 Parallel Streams

* There are some limitations with Java 8 parallel streams, e.g.

InputSource
I
trySplit()
InputSource; InputSource,
trySplit() trySplit()
. . InputSource, 4 InputSource, ,| |InputSource,,| |InputSource,,
- Parallel spliterators may be tricky... = I I I
. Process Process Process Process
» Concurrent collectors are easier sequentiaiy sequentially sequentially sequentially
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Result Container
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Cons of Java 8 Parallel Streams

« All parallel streams share a
common fork-join pool

See dzone.com/articles/think-twice-using-java-8



https://dzone.com/articles/think-twice-using-java-8

Cons of Java 8 Parallel Streams

« All parallel streams share a
common fork-join pool

« Java 8 completable futures
don’t have this limitation

See dzone.com/articles/think-twice-using-java-8



https://dzone.com/articles/think-twice-using-java-8

Cons of Java 8 Parallel Streams
* There are some limitations with Java 8 parallel streams, e.g.

« All parallel streams share a
common fork-join pool

o It's important to know how to
apply ManagedBlockers

See docs.orade.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html



https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

Cons of Java 8 Parallel Streams

* There are some limitations with Java 8 parallel streams, e.g.

« Some overhead occurs from use of
spliterators & fork-join framework

See coopsoft.com/dl/Blunder.pdf



http://coopsoft.com/dl/Blunder.pdf

Cons of Java 8 Parallel Streams

* There are some limitations with Java 8 parallel streams, e.g.

« Some overhead occurs from use of

spliterators & fork-join framework

 Java 8 completable futures may
be more efficient & scalable

COMPLETABLE_FUTURES 2 executed in 276 msecs
COMPLETABLE_FUTURES_1 executed in 285 msecs
PARALLEL STREAM executed in 383 msecs

COMPLETABLE_FUTURES _1 executed in 137 msecs
COMPLETABLE_FUTURES_2 executed in 138 msecs
PARALLEL STREAM executed |n 170 msecs
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Cons of Java 8 Parallel Streams

* There are some limitations with Java 8 parallel streams, e.g.

« Some overhead occurs from use of
spliterators & fork-join framework

EPA Fuel Economy Estimates

These estimates reflect new EPA methods beginning with 2008 models.

CITY MPG HIGHWAY MPG
Estimated
Annual Fuel Cost
$2,039
Expected range E p ected range
g based on 15,000 miles et dity
2 5 2.80 per gallon
15 to 21 MPG at$2.80 perg 21t 29 MPG

Combined Fuel E

Your actual

This Vehicle 5 %
mileage will vary
21 depending on how you
v drive and maintain
10 e—— 2 your vehicle.
All SUVs

©

» Naturally, your mileage may vary..
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Cons of Java 8 Parallel Streams

» There are some limitations with Java 8 parallel streams, e.q.

» There's no substitute for benchmarking!
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See java-performance.info/jmh



http://java-performance.info/jmh

Cons of Java 8 Parallel Streams

 In general, there's a tradeoff between computing performance & programmer
productivity when choosing amongst these frameworks

* i.e., completable futures are more efficient
& scalable, but are harder to program

Productivity

Performance
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Cons of Java 8 Parallel Streams

 In general, however, the pros of Java 8 parallel streams far outweigh the
cons in many use cases!!

See www.ibm.com/developerworks/library/j-jvmc2



http://www.ibm.com/developerworks/library/j-jvmc2

Cons of Java 8 Parallel Streams

« Good coverage of Java 8 parallel streams
appears in the book ™Java 8 in Action”

Lambdas, streams, and functional-style programming

.. Java 8
IN ACTION

Raoul-Gabriel Urma
Mario Fusco
Alan Mycroft

/l. MANNING

See www.manning.com/books/java-8-in-action



http://www.manning.com/books/java-8-in-action

End of Pros & Cons of
Java 8 Parallel Streams
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