Pros & Gons of Java 8 Parallel Streams

Douglas G. Schmidt
d.schmidt@vanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Professor of Computer Science

Vanderbilt University
Nashuville, Tennessee, USA

V

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Lesson

 Evaluate the pros & cons of Java 8
parallel streams

Pros of Java 8
Parallel Streams

Pros of Java 8 Parallel Streams

« The Java 8 streams framework simplifies
parallel programming by shielding
developers from details of splitting,
applying, & combining results

InputString

InputString,

trySplit()

trySplit()

InputString, , InputString; ,

InputString,

trySplit()

Process Process
sequentially sequentially

InputString, InputString, ,

Process Process
sequentially sequentially

Pros of Java 8 Parallel Streams

Parallel stream implementations are often __Tnput Strings to Search

(much) faster & more scalable than sequential

(stream & loops) implementations

Search Phrases

¥ ROSENCRANTZ o,

‘ l”‘ td

10
J\HH\ ki

falets:

et o 22 GOE)

Starting SearchStreamGangTest

PARALLEL_SPLITERATOR executed in 409 msecs
COMPLETABLE_FUTURES_INPUTS executed in 426 msecs
COMPLETABLE_FUTURES_PHASES executed in 427 msecs
PARALLEL_STREAMS executed in 437 msecs

PARALLEL STREAM_ PHASES executed in 440 msecs

PARALLEL STREAM_INPUTS executed in 802 msecs
RXJAVA INPUTS executed in 866 msecs

Ending SearchStreamGangTest

Pros of Java 8 Parallel Streams

« The performance speedup is a largely a
function of the partitioning strategy for

the input (N), the amount of work
performed (Q), & the # of cores

The NQ model

« Vs the # of data elements
to process per thread

« Q guantifies how CPU-
intensive the processing is

hi

lo

hi

Pros of Java 8 Parallel Streams

« Apps often don't need explicit synchronization or threading

Alleviates many accidental & inherent complexities of concurrency/parallelism

Pros of Java 8 Parallel Streams

« Apps often don’t need explicit synchronization or threading

Java class library handles locking needed to protect shared mutable state

Pros of Java 8 Parallel Streams

« Streams ensures that the structure of sequential & parallel code is the same

List<List<SearchResults>> List<List<SearchResults>>
processStream() ({ processStream() {
return getInput() return getInput ()
.stream/() .parallelStream()
.map (this: :processInput) .map (this: :processInput)
.collect (toList()) ; .collect (toList()) ;

Converting sequential to parallel streams only require minuscule changes!

Pros of Java 8 Parallel Streams
« Streams ensures that the structure of sequential & parallel code is the same

List<SearchResults> results = List<SearchResults> results =

mPhrasesToFind mPhrasesToFind
.parallelStream() .parallelStream ()

.map (phase -> .map (phase ->

searchForPhrase(..., searchForPhrase(.. .,

false)) true))
.filter (not (SearchResults .filter (not (SearchResults
: :isEmpty)) : :isEmpty))

.collect(toList()) ; .collect (toList()) ;

Converting sequential to parallel streams only require minuscule changes!

Pros of Java 8 Parallel Streams

« Examples show synergies between functional & object-oriented programming

11

Pros of Java 8 Parallel Streams

° - _ H H H Input Strings to Search
Object orl_ente_d design & pProgramming __ .., ciess>> T TN
features simplify understanding, ©SearchStreamGang

T Search Phrases
reuse, & extensibility /ﬁ?ﬁ \

Hamlet
<<Java Class>>
J DKS ® SearchWithSeq uenti/al/g/r)Zam <<Java Class>>
/] e&i

hWithParallelStreams

<<Java Class>
(2 SearchWithSequentialLoops <<\1§\;§ Class>>

/ (= SearchWithParallelSpliterator

<<Java Class> oy e
(9 SearchWithCompletabl¢Futuresinputs e \ ava Class
e

/ archWithParallelStreaminputs

<<Java Class>>
(9 SearchWithCompletableFuturesPhrases

<<Java Class>>
(2 SearchWithParallelStreamPhrases

12

Pros of Java 8 Parallel Streams

« Implementing object-oriented hook <<Java Class>>
methods with functional programming © SearchWithParallelStreams

features he|pS to close gap between = processStream():List<List<SearchResults>>

domain intent & computations m processinput(CharSequence):List<SearchResults>

J

(getInput()
.parallelStream()

.map (this: :processInput)
.collect(toList());

return mPhrasesToFind
.parallelStream()
.map (phrase -> searchForPhrase (phrase, input, title, false))
.filter (not (SearchResults: :isEmpty)
.collect(toList()) ;

13

Cons of Java 8
Parallel Streams

14

Cons of Java 8 Parallel Streams

* There are some limitations with Java 8 parallel streams

The Java 8 parallel streams framework is not all unicorns & rainbows!!

Cons of Java 8 Parallel Streams

» There are some limitations with Java 8 parallel streams, e.q.

» Some problems can't be expressed
via the “split-apply-combine” model

trySplit()

trySp

DataSource, 4

Process
guentially

Process
sequentially

See dzone.com/articles/whats-wrong-java-8-part-iii

https://dzone.com/articles/whats-wrong-java-8-part-iii

Cons

of Java 8 Parallel Streams

* There are some limitations with Java 8 parallel streams, e.g.

« If behaviors aren’t thread-safe

: , S
race conditions may occur Thread, l

Thread,

4

=S |
} /vﬁ— -

Race conditions occur when a program
depends on the sequence or timing
of threads for it to operate properly

Shared State

See en.wiki

pedia.org/wiki/Race condition#Software

https://en.wikipedia.org/wiki/Race_condition#Software

Cons of Java 8 Parallel Streams

» There are some limitations with Java 8 parallel streams, e.q.

« Parallel spliterators may be tricky...

18

Cons of Java 8 Parallel Streams

* There are some limitations with Java 8 parallel streams, e.g.

InputSource
I
trySplit()
InputSource; InputSource,
trySplit() trySplit()
. . InputSource, 4 InputSource, ,| |InputSource,,| |InputSource,,
- Parallel spliterators may be tricky... = I I I
. Process Process Process Process
» Concurrent collectors are easier sequentiaiy sequentially sequentially sequentially

L

k accumulate())

_

accumulate() accumulate()
Concurrent
Result Container

19

Cons of Java 8 Parallel Streams

« All parallel streams share a
common fork-join pool

See dzone.com/articles/think-twice-using-java-8

https://dzone.com/articles/think-twice-using-java-8

Cons of Java 8 Parallel Streams

« All parallel streams share a
common fork-join pool

« Java 8 completable futures
don’t have this limitation

See dzone.com/articles/think-twice-using-java-8

https://dzone.com/articles/think-twice-using-java-8

Cons of Java 8 Parallel Streams
* There are some limitations with Java 8 parallel streams, e.g.

« All parallel streams share a
common fork-join pool

o It's important to know how to
apply ManagedBlockers

See docs.orade.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

Cons of Java 8 Parallel Streams

* There are some limitations with Java 8 parallel streams, e.g.

« Some overhead occurs from use of
spliterators & fork-join framework

See coopsoft.com/dl/Blunder.pdf

http://coopsoft.com/dl/Blunder.pdf

Cons of Java 8 Parallel Streams

* There are some limitations with Java 8 parallel streams, e.g.

« Some overhead occurs from use of

spliterators & fork-join framework

 Java 8 completable futures may
be more efficient & scalable

COMPLETABLE_FUTURES 2 executed in 276 msecs
COMPLETABLE_FUTURES_1 executed in 285 msecs
PARALLEL STREAM executed in 383 msecs

COMPLETABLE_FUTURES _1 executed in 137 msecs
COMPLETABLE_FUTURES_2 executed in 138 msecs
PARALLEL STREAM executed |n 170 msecs

24

Cons of Java 8 Parallel Streams

* There are some limitations with Java 8 parallel streams, e.g.

« Some overhead occurs from use of
spliterators & fork-join framework

EPA Fuel Economy Estimates

These estimates reflect new EPA methods beginning with 2008 models.

CITY MPG HIGHWAY MPG
Estimated
Annual Fuel Cost
$2,039
Expected range E p ected range
g based on 15,000 miles et dity
2 5 2.80 per gallon
15 to 21 MPG at$2.80 perg 21t 29 MPG

Combined Fuel E

Your actual

This Vehicle 5 %
mileage will vary
21 depending on how you
v drive and maintain
10 e—— 2 your vehicle.
All SUVs

©

» Naturally, your mileage may vary..

25

Cons of Java 8 Parallel Streams

» There are some limitations with Java 8 parallel streams, e.q.

» There's no substitute for benchmarking!

algorithms array avoiding worst
C)!‘aCtICES BiEDecimaI binary serialization
pitset book review boxing byte buffer

collections cpu
Qtlmlzatlo data

compression datat
ootlmlzatlon date dateformat double
exceptions FastUtil FIX hashcode hashmap

hdd hppc i0 J]ava /7 |ava 8 java dates jdk
8 IMH INI Koloboke map memory layout

memory
O Qti m izatio n multithreading
parsing primitive collections profiler ssd

Stl’l N g string concatenation string pool
sun.misc.Unsafe tols trove

See java-performance.info/jmh

http://java-performance.info/jmh

Cons of Java 8 Parallel Streams

 In general, there's a tradeoff between computing performance & programmer
productivity when choosing amongst these frameworks

* i.e., completable futures are more efficient
& scalable, but are harder to program

Productivity

Performance

27

Cons of Java 8 Parallel Streams

 In general, however, the pros of Java 8 parallel streams far outweigh the
cons in many use cases!!

See www.ibm.com/developerworks/library/j-jvmc2

http://www.ibm.com/developerworks/library/j-jvmc2

Cons of Java 8 Parallel Streams

« Good coverage of Java 8 parallel streams
appears in the book ™Java 8 in Action”

Lambdas, streams, and functional-style programming

.. Java 8
IN ACTION

Raoul-Gabriel Urma
Mario Fusco
Alan Mycroft

/l. MANNING

See www.manning.com/books/java-8-in-action

http://www.manning.com/books/java-8-in-action

End of Pros & Cons of
Java 8 Parallel Streams

30

