
Background on Concurrency &

Parallelism in Java (Part 1)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand the meaning of the

terms concurrency & parallelism

join join join join

Sub-Task1.1 Sub-Task1.2 Sub-Task2.1 Sub-Task2.2

fork fork forkfork

join join

join

Sub-Task1 Sub-Task2

forkfork

Task

3

An Overview
of Concurrency

4

An Overview of Concurrency

See en.wikipedia.org/wiki/Concurrency_(computer_science)

• Concurrency is a form of computing where threads can run simultaneously

https://en.wikipedia.org/wiki/Concurrency_(computer_science)

5

An Overview of Concurrency
• Concurrency is a form of computing where threads can run simultaneously

See docs.oracle.com/javase/tutorial/essential/concurrency/threads.html

new Thread(() ->

someComputations());

A Java threads are units of execution
for instruction streams that can run

concurrently on processor cores

https://docs.oracle.com/javase/tutorial/essential/concurrency/threads.html

6

• Concurrency is a form of computing where threads can run simultaneously

• Often used to offload work from the user
interface (UI) thread to background
thread(s)

An Overview of Concurrency

See developer.android.com/topic/performance/threads.html

UI
thread

background
threads

https://developer.android.com/topic/performance/threads.html

7

• Concurrency is a form of computing where threads can run simultaneously

• Often used to offload work from the user
interface (UI) thread to background
thread(s), e.g.

• Background thread(s) can block

• The UI thread does not block

An Overview of Concurrency

See developer.android.com/training/multiple-threads/communicate-ui.html

UI
thread

background
threads

https://developer.android.com/training/multiple-threads/communicate-ui.html

8

An Overview of Concurrency
• Concurrent Java threads interact via shared objects and/or message passing

See docs.oracle.com/javase/8/docs/api/?java/util/concurrent/package-summary.html

write()

read()

send()

recv()

https://docs.oracle.com/javase/8/docs/api/?java/util/concurrent/package-summary.html

9

An Overview of Concurrency
• Concurrent Java threads interact via shared objects and/or message passing

• Shared objects

• Synchronize concurrent operations
on objects so object state remains
coherent after each operation

See tutorials.jenkov.com/java-concurrency/thread-safety.html

write()

read()

send()

recv()

T2
T3Awaiting lock

Critical Section

Running
Thread

T1

Lock acquired

Lock released

http://tutorials.jenkov.com/java-concurrency/thread-safety.html

10

An Overview of Concurrency
• Concurrent Java threads interact via shared objects and/or message passing

• Shared objects

• Synchronize concurrent operations
on objects so object state remains
coherent after each operation

• Examples of Java synchronizers:

• Synchronized statements/methods

• Reentrant locks & intrinsic locks

• Atomic operations

• Semaphores & condition objects

• “Compare-and-swap” (CAS)
operations in sun.misc.unsafe

See dzone.com/articles/the-java-synchronizers

write()

read()

send()

recv()

https://dzone.com/articles/the-java-synchronizers

11

An Overview of Concurrency
• Concurrent Java threads interact via shared objects and/or message passing

• Shared objects

• Message passing

• Send message(s) from producer
thread(s) to consumer thread(s)
via a thread-safe queue

See en.wikipedia.org/wiki/Message_passing

write()

read()

send()

recv()

https://en.wikipedia.org/wiki/Message_passing

12

An Overview of Concurrency
• Concurrent Java threads interact via shared objects and/or message passing

• Shared objects

• Message passing

• Send message(s) from producer
thread(s) to consumer thread(s)
via a thread-safe queue

• Examples of Java thread-safe queues

• Array & linked blocking queues

• Priority blocking queue

• Synchronous queue

• Concurrent linked queue

See docs.oracle.com/javase/tutorial/collections/implementations/queue.html

write()

read()

send()

recv()

https://docs.oracle.com/javase/tutorial/collections/implementations/queue.html

13

• Key goals of using shared objects and/or
message passing are to share resources
safely/efficiently & avoid hazards

An Overview of Concurrency

See en.wikipedia.org/wiki/Thread_safety

https://en.wikipedia.org/wiki/Thread_safety

14See en.wikipedia.org/wiki/Race_condition#Software

• Key goals of using shared objects and/or
message passing are to share resources
safely/efficiently & avoid hazards, e.g.

• Race conditions

• Race conditions occur when a
program depends upon the
sequence or timing of threads
for it to operate properly

An Overview of Concurrency

write()

read()

https://en.wikipedia.org/wiki/Race_condition#Software

15

An Overview of Concurrency

See github.com/douglascraigschmidt/LiveLessons/tree/master/BuggyQueue

This test program induces race conditions due
to lack of synchronization between producer &
consumer threads accessing a bounded queue

write()

read()

• Key goals of using shared objects and/or
message passing are to share resources
safely/efficiently & avoid hazards, e.g.

• Race conditions

• Race conditions occur when a
program depends upon the
sequence or timing of threads
for it to operate properly

https://github.com/douglascraigschmidt/LiveLessons/tree/master/BuggyQueue

16

An Overview of Concurrency
• Key goals of using shared objects and/or

message passing are to share resources
safely/efficiently & avoid hazards, e.g.

• Race conditions

• Memory inconsistencies

• These errors occur when different
threads have inconsistent views of
what should be the same data

See jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html

http://jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html

17

An Overview of Concurrency
• Key goals of using shared objects and/or

message passing are to share resources
safely/efficiently & avoid hazards, e.g.

• Race conditions

• Memory inconsistencies

• Deadlocks

• Occur when 2+ competing threads
are waiting for the other(s) to finish,
& thus none ever do

T2T1

<<owns>>

<<owns>> <<needs>>

<<needs>>

L1

L2

See en.wikipedia.org/wiki/Deadlock

http://en.wikipedia.org/wiki/Deadlock

18

An Overview
of Parallelism

19

An Overview of Parallelism
• Parallelism is a form of computing that

performs several steps on multiple
processor cores

See en.wikipedia.org/wiki/Parallel_computing

join join

join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2

fork()

Task

fork() fork()

https://en.wikipedia.org/wiki/Parallel_computing

20

• Parallelism is a form of computing that
performs several steps on multiple
processor cores, i.e.

• Split – partition a task
into sub-tasks

An Overview of Parallelism

join join

join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2

fork()

Task

fork() fork()

21

• Parallelism is a form of computing that
performs several steps on multiple
processor cores, i.e.

• Split – partition a task
into sub-tasks

• Apply – Run independent
sub-tasks in parallel

An Overview of Parallelism

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2

fork()

Task

fork() fork()

join join

join

22

• Parallelism is a form of computing that
performs several steps on multiple
processor cores, i.e.

• Split – partition a task
into sub-tasks

• Apply – Run independent
sub-tasks in parallel

• Combine – Merge the sub-
results from sub-tasks into
one final result

An Overview of Parallelism

join join

join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2

fork()

Task

fork() fork()

23

• A key goal of parallelism is to efficiently
partition tasks into sub-tasks & combine
results

An Overview of Parallelism

24

• A key goal of parallelism is to efficiently
partition tasks into sub-tasks & combine
results

• Parallelism thus focuses on
optimizing performance

• e.g., throughput, scalability,
& latency

See www.ibm.com/developerworks/library/j-java-streams-4-brian-goetz

An Overview of Parallelism

http://www.ibm.com/developerworks/library/j-java-streams-4-brian-goetz

25

• A key goal of parallelism is to efficiently
partition tasks into sub-tasks & combine
results

• Parallelism thus focuses on
optimizing performance

• Parallelism works best when
threads share no mutable
state & don’t block

See henrikeichenhardt.blogspot.com/2013/06/why-shared-mutable-state-is-root-of-all.html

An Overview of Parallelism

join join

join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2

fork()

Task

fork() fork()

http://henrikeichenhardt.blogspot.com/2013/06/why-shared-mutable-state-is-root-of-all.html

26

• A key goal of parallelism is to efficiently
partition tasks into sub-tasks & combine
results

• Parallelism thus focuses on
optimizing performance

• Parallelism works best when
threads share no mutable
state & don’t block

• Hence Java 8’s emphasis on
“fork-join” & “work-stealing”

An Overview of Parallelism

join join

join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2

fork()

Task

fork() fork()

See en.wikipedia.org/wiki/Fork-join_model & en.wikipedia.org/wiki/Work_stealing

https://en.wikipedia.org/wiki/Fork%E2%80%93join_model
https://en.wikipedia.org/wiki/Work_stealing

27

• Brian Goetz has an excellent talk
about the evolution of Java from
concurrent to parallel computing

See www.youtube.com/watch?v=NsDE7E8sIdQ

An Overview of Parallelism

http://www.youtube.com/watch?v=NsDE7E8sIdQ

28See www.infoq.com/presentations/parallel-java-se-8

• Brian Goetz has an excellent talk
about the evolution of Java from
concurrent to parallel computing

His talk emphasizes that Java 8
combines functional programming
with fine-grained data parallelism
to leverage many-core processors

An Overview of Parallelism

http://www.infoq.com/presentations/parallel-java-se-8

29

End of Background on
Java Concurrency &
Parallelism (Part 1)

