The Java Fork-Join Pool Framework

(Part1)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
‘ ;7 Integrated Systems
Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives In this Part of the Lesson

e Understand how the Java fork-join
framework processes tasks in
parallel

Learning Objectives in this Part of the Lesson

<<Java Class>>
& ForkJoinTask<V>

A

* Recognize the structure & functionality

of the fork-join framework

<<Java Class>>

&*RecursiveAction
compute():void
<<Java Class>>
& RecursiveTask<V>
'compute()

<<Java Class>>
& CountedCompleter<T>
~completer

@' compute():void jo 1

Learning Objectives In this Part of the Lesson

e Know how the fork-join framework
IS Implemented internally

Fork-Join Pool

Deque Deque Deque
Sub-Task,
Sub-Task, 3 Sub-Task; 4

Sub-Task; 4 e Sub-Task; 4

Overview of the Java
Fork-Join Pool
Computation Model

)

Overview of the Java Fork-Join Pool Computation Model

* The fork-join pool provides a high performance, fine-grained task execution
framework for Java data parallelism

Class ForkjJoinPool

java.lang.Object
java.util.concurrent.AbstractExecutorService
java.util.concurrent.ForkJoinPool

All Implemented Interfaces:
Executor, ExecutorService

public class ForkJoinPool
extends AbstractExecutorService

An ExecutorService for running ForkJoinTasks. A ForkJoinPool provides the entry point for submissions from non-ForkJoinTask clients, as well as management and monitoring
operations.

A ForkJoinPool differs from other kinds of ExecutorService mainly by virtue of employing work-stealing: all threads in the pool attempt to find and execute tasks submitted to the pool
and/or created by other active tasks (eventually blocking waiting for work if none exist). This enables efficient processing when most tasks spawn other subtasks (as do most
ForkJoinTasks), as well as when many small tasks are submitted to the pool from external clients. Especially when setting asyncMode to true in constructors, ForkJoinPools may also be
appropriate for use with event-style tasks that are never joined.

A static commonPool() is available and appropriate for most applications. The common pool is used by any ForkJoinTask that is not explicitly submitted to a specified pool. Using the
common pool normally reduces resource usage (its threads are slowly reclaimed during periods of non-use, and reinstated upon subsequent use).

For applications that require separate or custom pools, a ForkJoinPool may be constructed with a given target parallelism level; by default, equal to the number of available processors.
The pool attempts to maintain enough active (or available) threads by dynamically adding, suspending, or resuming internal worker threads, even if some tasks are stalled waiting to join
others. However, no such adjustments are guaranteed in the face of blocked 1/O or other unmanaged synchronization. The nested ForkJoinPool.ManagedBlocker interface enables
extension of the kinds of synchronization accommodated.

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html

Overview of the Java Fork-Join Pool Computation Model

* The fork-join pool provides a high performance, fine-grained task execution
framework for Java data parallelism

It provides a parallel computing engine for many higher-level frameworks

Parallel Streams Completable Futures
HEEAEEE- -4 HELEEEE- -4
I < [1 < 1l < 1< |
AV 3

filter(not(this::urlCached))

Soo d

map(this::downloadimage)

VI .

ForkJoinPool filter(not(this::urlCached))

N

map(this::downloadimageAsync)

' Pagj of worker 'l!ll"ﬂ"a"?li U

flatMap(this::applyFiltersAsync)

s

collect(toFuture())

flatMap(this::applyFilters)

! ! il il
A 1 1
collect(toList())

See www.infog.com/interviews/doug-lea-fork-join

http://www.infoq.com/interviews/doug-lea-fork-join

Overview of the Java Fork-Join Pool Computation Model

» The fork-join pool supports a style of parallel programming that solves
problems by divide & conquer

Result solve(Problem problem) {

iIT (problem 1s small)
directly solve problem

else {
split problem Into iIndependent parts
fork new subtasks to solve each part
join all subtasks
compose result from subresults

}
}

See en.wikipedia.org/wiki/Divide and conquer algorithm

https://en.wikipedia.org/wiki/Divide_and_conquer_algorithm

Overview of the Java Fork-Join Pool Computation Model

» The fork-join pool supports a style of parallel programming that solves

problems by divide & conquer, e.q. DataSource
. . . _ [
Splitting a task into sub-tasks | ok |
DataSource, DataSource,
I I
fork() fork()
DataSource, ; DataSource; , DataSource, ; DataSource, ,

Overview of the Java Fork-Join Pool Computation Model
» The fork-join pool supports a style of parallel programming that solves

problems by divide & conquer, e.q. DataSource
. N . _ I
Splitting a task into sub-tasks | p— |
« A task creates sub-tasks Dataslourcel Datasi’“rcez
by fork()'ing fork() Fork()
DataSource, ; DataSource; , DataSource, ; DataSource, ,

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html#tfork

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html#fork--

Overview of the Java Fork-Join Pool Computation Model
» The fork-join pool supports a style of parallel programming that solves

problems by divide & conquer, e.g. DataSource
. " _) |
Splitting a task into sub-tasks | i |
» A task creates sub-tasks Datasloumel Datasfurcez
by fork()'ing fork() Fork()
5'EO|9 9|9|i1?l',il’l g DataSource, DataSource, , DataSource, ; DataSource, ,

Hares!

A (sub-)task only splits itself into (more) sub-tasks if the work is sufficiently big

Overview of the Java Fork-Join Pool Computation Model

» The fork-join pool supports a style of parallel programming that solves
problems by divide & conquer, e.qg.

» Solving the sub-tasks in
parallel

Process Process Process Process
sequentially sequentially sequentially sequentially

Implemented by fork-join framework, Java execution environment, OS, & hardware

Overview of the Java Fork-Join Pool Computation Model

» The fork-join pool supports a style of parallel programming that solves
problems by divide & conquer, e.qg.

» Solving the sub-tasks in ource, Ource,
parallel

e Sub-tasks can run in — — — -

para”el on different cores Process Process Process Process
sequentially sequentially sequentially sequentially

| | | |
13

Overview of the Java Fork-Join Pool Computation Model

» The fork-join pool supports a style of parallel programming that solves
problems by divide & conquer, e.qg.

» Solving the sub-tasks in
parallel

Process Process Process Process
sequentially sequentially sequentially sequentially

« Sub-tasks can run | | |

concurrently in different
threads on a single core 9§

14

Overview of the Java Fork-Join Pool Computation Model

» The fork-join pool supports a style of parallel programming that solves
problems by divide & conquer, e.qg.

« Waiting for them to
complete

Q Q Q Q

Join() Join() Join() Join()

15

Overview of the Java Fork-Join Pool Computation Model

» The fork-join pool supports a style of parallel programming that solves
problems by divide & conquer, e.qg.

« Waiting for them to
complete

* join() waits for a

sub-task to finish O) O QO

Join() Join() Join() Join()

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html#join

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html#join--

Overview of the Java Fork-Join Pool Computation Model

» The fork-join pool supports a style of parallel programming that solves
problems by divide & conquer, e.qg.

« Waiting for them to
complete

* join() waits for a

sub-task to finish O) O QO

Join() Join() Join() Join()

join() also plays a role in executing sub-tasks, as discussed shortly

Overview of the Java Fork-Join Pool Computation Model

» The fork-join pool supports a style of parallel programming that solves
problems by divide & conquer, e.qg.

* Merging the results

NN

Join() Join()

18

Overview of the Java Fork-Join Pool Computation Model

» The fork-join pool supports a style of parallel programming that solves
problems by divide & conquer, e.qg.

* Merging the results

e A task can use calls to
join() to merge all sub

-task results together O\MQHO/C>

19

Overview of the Java Fork-Join Pool Computation Model

» The fork-join pool supports a style of parallel programming that solves
problems by divide & conquer, e.qg.

* Merging the results

e A task can use calls to
join() to merge all sub

-task results together O\MQHO/C>

If a task does not return a result then it just waits for its sub-tasks to complete

The Fork-Join
Framework Structure
& Functionality

21

The Fork-Join Framework Structure & Functionality

» ForkJoinPool is an Executor
Service implementation

Class ForkjJoinPool

java.lang.Object
java.util.concurrent.AbstractExecutorService
java.util.concurrent.ForkJoinPool

All Implemented Interfaces:

Executor, ExecutorService

public class ForkJoinPool
extends AbstractExecutorService

An ExecutorService for running ForkJoinTasks. A ForkJoinPool provides the entry point for
submissions from non-ForkJoinTask clients, as well as management and monitoring operations.

A ForkJoinPool differs from other kinds of ExecutorService mainly by virtue of employing
work-stealing: all threads in the pool attempt to find and execute tasks submitted to the pool
and/or created by other active tasks (eventually blocking waiting for work if none exist). This
enables efficient processing when most tasks spawn other subtasks (as do most
ForkJoinTasks), as well as when many small tasks are submitted to the pool from external
clients. Especially when setting asyncMode to true in constructors, ForkJoinPools may also be
appropriate for use with event-style tasks that are never joined.

A static commonPool() is available and appropriate for most applications. The common pool is
used by any ForkJoinTask that is not explicitly submitted to a specified pool. Using the common
pool normally reduces resource usage (its threads are slowly reclaimed during periods of non-
use, and reinstated upon subsequent use).

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html

The Fork-Join Framework Structure & Functionality

» ForkJoinPool is an Executor
Service implementation

o Executor Service is the basis for
Java Executor framework subclasses

<<Java Interface>>
3 Executor
<<Java Interface>>
% ExecutorService
<<Java Class>>
(& AbstractExecutorService

<<Java Class>>

(& ThreadPoolExecutor <<Java Class>>

13 (®ForkJoinPool

<<Java Class>>
(# ScheduledThreadPoolExecutor

See docs.oracle.com/javase/tutorial/essential/concurrency/executors.htmi

http://docs.oracle.com/javase/tutorial/essential/concurrency/executors.html

The Fork-Join Framework Structure & Functionality

» ForkJoinPool is an Executor <<Java Interface>>
Service implementation & Executor

T

<<Java Interface>>
% ExecutorService

» Other implementations of Executor ~

Service execute runnables or callables <<Java Class>>
(& AbstractExecutorService

<<Java Class>>

£ (@ ForkJoinPool

<<Java Class>> T
(¥ ThreadPoolExecutor

<<Java Class>>
(# ScheduledThreadPoolExecutor

24

The Fork-Join Framework Structure & Functionality

» ForkJoinPool is an Executor <<Java Interface>>
Service implementation & Executor

T

<<Java Interface>>
% ExecutorService

<<Java Class>>
(& AbstractExecutorService

* In contrast, the ForkJoinPool =
executes ForkJoinTasks ?

<<Java Class>>

(® ThreadPoolExecutor <<Java Class>>
T ®ForkJoinPool

<<Java Class>>
(# ScheduledThreadPoolExecutor

It can also execute runnables & callables, but that’s not its main purpose

The Fork-Join Framework Structure & Functionality

» ForkJoinPool enables non-ForkJoinTask clients to process ForkJoinTasks

void execute(ForkJoinTask<T>) — Arrange async execution
T Invoke(ForkJoinTask<T>) — Performs the given task,
returning its result upon completion

ForkJoinTask submit(ForkJoinTask) — Submits a ForkJoinTask for
<T> execution, returns a future

‘ We’'ll discuss these methods later in this lesson |

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#execute-java.util.concurrent.ForkJoinTask-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#invoke-java.util.concurrent.ForkJoinTask-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#submit-java.util.concurrent.ForkJoinTask-

The Fork-Join Framework Structure & Functionality

» ForkJoinPool enables non-ForkJoinTask clients to process ForkJoinTasks

 Clients insert new tasks onto a shared queued used to feed work-stealing
gueues managed by worker threads

Shared Queue

r submit
—

27

Overview of Java Fork-Join Framework Internals

» ForkJoinPool enables non-ForkJoinTask clients to process ForkJoinTasks

* The goal is to maximize utilization % EMERGING TECHNOLOGIES
of processor cores

"Engineering Concurrent Library Components”

Doug Lea

Day 2 - April 3, 2013 - 1:30 PM - Salon C

phillyemergingtech.com

See www.youtube.com/watch?v=sqOMX3fHkro

https://www.youtube.com/watch?v=sq0MX3fHkro

The Fork-Join Framework Structure & Functionality

» A ForkJoinTask associates a
chunk of data along with a
computation on that data

Class ForkjJoinTask<V>

java.lang.Object
java.util.concurrent.ForkjoinTask<V=>

All Implemented Interfaces:
Serializable, Future<V>

Direct Known Subclasses:

CountedCompleter, RecursiveAction, RecursiveTask

public abstract class ForkJoinTask<V>
extends Object
implements Future<V>, Serializable

Abstract base class for tasks that run within a ForkJoinPool. A ForkJoinTask is a thread-like
entity that is much lighter weight than a normal thread. Huge numbers of tasks and subtasks
may be hosted by a small number of actual threads in a ForkJoinPool, at the price of some usage
limitations.

A "main" ForkJoinTask begins execution when it is explicitly submitted to a ForkJoinPool, or,
if not already engaged in a ForkJoin computation, commenced in the
ForkJoinPool.commonPool() via fork(), invoke(), or related methods. Once started, it will
usually in turn start other subtasks. As indicated by the name of this class, many programs
using ForkJoinTask employ only methods fork() and join(), or derivatives such as
invokeAll. However, this class also provides a number of other methods that can come into
play in advanced usages, as well as extension mechanics that allow support of new forms of
fork/join processing.

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html

The Fork-Join Framework Structure & Functionality

» A ForkJoinTask associates a
chunk of data along with a
computation on that data

* This enables fine-grained
data parallelism

Class ForkjJoinTask<V>

java.lang.Object
java.util.concurrent.ForkjoinTask<V=>

All Implemented Interfaces:
Serializable, Future<V>

Direct Known Subclasses:
CountedCompleter, RecursiveAction, RecursiveTask

public abstract class ForkJoinTask<V>
extends Object
implements Future<V>, Serializable

Abstract base class for tasks that run within a ForkJoinPool. A ForkJoinTask is a thread-like
entity that is much lighter weight than a normal thread. Huge numbers of tasks and subtasks
may be hosted by a small number of actual threads in a ForkJoinPool, at the price of some usage
limitations.

A "main" ForkJoinTask begins execution when it is explicitly submitted to a ForkJoinPool, or,
if not already engaged in a ForkJoin computation, commenced in the
ForkJoinPool.commonPool() via fork(), invoke(), or related methods. Once started, it will
usually in turn start other subtasks. As indicated by the name of this class, many programs
using ForkJoinTask employ only methods fork() and join(), or derivatives such as
invokeAll. However, this class also provides a number of other methods that can come into
play in advanced usages, as well as extension mechanics that allow support of new forms of
fork/join processing.

See www.dre.Vanderbilt.edu/—schmidt/PDF/DataParallelisminJava.pdf

http://www.dre.vanderbilt.edu/%7Eschmidt/PDF/DataParallelismInJava.pdf

The Fork-Join Framework Structure & Functionality

» A ForkJoinTask is lighter weight than
a Java thread

ForkJoinTask

Thread

e.g., it doesn’t maintain its own run-time stack

The Fork-Join Framework Structure & Functionality

» A ForkJoinTask is lighter weight than

a Java thread g € ForkloinTasks < % 5

» A large # of ForkJoinTasks can < % £ 5 5 % =
thus run in a small # of worker ¢ F s f £
threads in a fork-join pool P £ : £ K-

Each worker thread is a Java Thread object with its own stack, registers, etc.

The Fork-Join Framework Structure & Functionality

* A ForkJoinTask has two methods that £ 50inTask fork()
control parallel processing/merging <7>
Parent ForkJoinTask
Vv join()

JoinQ) JoinQ)

Tfork() fork()

Child ForkJoinTasks

33

The Fork-Join Framework Structure & Functionality

» A ForkJoinTask has two methods that ForkJoinTask fork() — Arranges to

control parallel processing/merging <T> asynchronously execute this

Parent ForkJoin Task task in the appropriate pool

joinQ JoinQ

fork() Tfork()

Child ForkJoinTasks

ForkJoinTask

fork() is akin to a lightweight version of Thread.start()

The Fork-Join Framework Structure & Functionality

» A ForkJoinTask has two methods that ForkJoinTask fork() — Arranges to

control parallel processing/merging 7> asynchronously execute this
task in the appropriate pool

Parent ForkJoinTask

joinQ JoinQ

fork() Tfork()

Child ForkJoinTasks

fork() does not run the task immediately, but instead places it on a work queue

The Fork-Join Framework Structure & Functionality

» A ForkJoinTask has two methods that
control parallel processing/merging

Parent ForkJoinTask
V join() — Returns the result

of the computation when

. N it is done
joinQ JoinQ

fork() fork()

Child ForkJoinTasks

36

The Fork-Join Framework Structure & Functionality

» A ForkJoinTask has two methods that
control parallel processing/merging

Parent ForkJoinTask

V join() — Returns the result
of the computation when
o N it is done
join(Q) join(Q)
« Unlike Thread.join(), ForkJoinTask.join()
fork() fork(Q) doesn’'t simply block the calling thread
Child ForkJoinTasks

37

The Fork-Join Framework Structure & Functionality

» A ForkJoinTask has two methods that
control parallel processing/merging

Parent ForkJoinTask
V join() — Returns the result

of the computation when

N it is done
joinQO JoinQ)

Tfork() fork()

» Instead, it uses a worker thread to help
run other tasks

Child ForkJoinTasks

38

The Fork-Join Framework Structure & Functionality

» A ForkJoinTask has two methods that
control parallel processing/merging

Parent ForkJoinTask
V join() — Returns the result

of the computation when

N it is done
joinQO JoinQ)

Tfork() fork()

* When a worker thread encounters a

Child ForkJoinTasks join() it processes any other tasks until
It notices the target sub-task is done

39

The Fork-Join Framework Structure &

* Programs rarely use the ForkJoinTask
class directly

40

The Fork-Join Framework Structure & Functionality

* Programs rarely use the ForkJoinTask <<Java Class>>
class directly ... but instead extend one & ForkJoinTask<V>
of its subclasses & override compute() TN WX

<<Java Class>>
¢ RecursiveAction

compute():void

<<Java Class>>
& RecursiveTask<V>

'ﬁ' compu te ()

<<Java Class>>
& CountedCompleter<T>

@' compute():void

~completer

0..1

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-tree.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-tree.html

The Fork-Join Framework Structure & Functionality
* Programs rarely use the ForkJoinTask <<Java Class>>

class directly ... but instead extend one ©ForkJoinTask<V>
of its subclasses & override compute() JARAS
 RecursiveAction

» Use for computations that do <<Java Class>>

not return results & RecursiveAction

compute():void

<<Java Class>>
& RecursiveTask<V>

'compute()

<<Java Class>>
& CountedCompleter<T>

~completer

@' compute():void jU 1

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/RecursiveAction.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/RecursiveAction.html

The Fork-Join Framework Structure & Functionality
* Programs rarely use the ForkJoinTask <<Java Class>>

class directly ... but instead extend one ©ForkJoinTask<V>

of its subclasses & override compute() 0

 RecursiveTask <<Java Class>>
(& RecursiveAction

« Use for computations that

compute():void

do return results

<<Java Class>>
& RecursiveTask<V>

'compute()

<<Java Class>>
& CountedCompleter<T>
~completer

@' compute():void jU 1

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/RecursiveTask.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/RecursiveTask.html

The Fork-Join Framework Structure & Functionality

* Programs rarely use the ForkJoinTask <<Java Class>>
class directly ... but instead extend one SRR
of its subclasses & override compute() R

<<Java Class>>

« CountedCompleter ﬁfofjnc:;::::tfon
* Used for computations in <<Java Classo>
which completed actions &RecursiveTask<V>
trigger other actions < compute()

<<Java Class>>
& CountedCompleter<T>

@' compute():void

~completer

0..1

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CountedCompleter. html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CountedCompleter.html

The Fork-Join Framework Structure & Functionality

* Programs rarely use the ForkJoinTask <<Java Class>>
class directly ... but instead extend one & ForkJoinTask<V>
of its subclasses & override compute() TN WX

e RecursiveAction

e RecursiveTask <<Java Class>>
R iveActi

 CountedCompleter ©RecursiveAction

compute():void

<<Java Class>>
& RecursiveTask<V>

'compute()

<<Java Class>>
& CountedCompleter<T>

@' compute():void

~completer

0..1

None of the classes are functional interfaces, so lambda expressions can’t be used..

Overview of Java Fork-Join
Framework Internals

46

Overview of Java Fork-Join Framework Internals

e Each worker thread in a fork-join WorkQueue WorkQueue WorkQueue

pool maintains its own “double- Sub-Task, ;

ended queue” (deque)
Sub-Task, ,
Sub-Task; 5 Sub-Task; 5
Sub-Task, 4 Sub-Tasks 4

See en.wikipedia.org/wiki/Double-ended queue

https://en.wikipedia.org/wiki/Double-ended_queue

Overview of Java Fork-Join Framework Internals

o Each worker thread in a fork-join WorkQueue WorkQueue WorkQueue

pool maintains its own “double- Sub-Task, ;
ended queue” (deque)
o Sub-Task, ,
e The Java fork-join framework
implements this deque via the | SUP-Taskus S IEE G
WorkQueue class Sub-Task, , Sub-Tasks ,

See Java8/util/concurrent/ForkJoinPool.java

http://grepcode.com/file/repo1.maven.org/maven2/net.sourceforge.streamsupport/streamsupport/1.2.2/java8/util/concurrent/ForkJoinPool.java

Overview of Java Fork-Join Framework Internals

o Sub-tasks fork()’d in a task run WorkQueue WorkQueue WorkQueue

by a worker thread are pushed Sub-Task, ,

onto the head of that worker’s

OWN deque Sub-Task; ,
Sub-Task; 5 Sub-Task; 5
Sub-Task, , Sub-Task, , Sub-Task; ,

See gee.cs.osweqo.edu/dl/papers/f].pdf

http://gee.cs.oswego.edu/dl/papers/fj.pdf

Overview of Java Fork-Join Framework Internals

o Sub-tasks fork()’d in a task run WorkQueue WorkQueue WorkQueue
by a worker thread are pushed Sub-Task, ;
onto the head of that worker’s
own deque Sub-Task, ,
« A worker threads processes its | Sub-Taskis SR G
own deque in LIFO order by Sub-Task, , | Sub-Taskg,

popping (sub-)tasks from the
from of its own deque

Overview of Java Fork-Join Framework Internals

o Sub-tasks fork()’d in a task run WorkQueue WorkQueue WorkQueue
by a worker thread are pushed Sub-Task, ,
onto the head of that worker’s
own deque Sub-Task; ,

« A worker threads processes its | Sub-Taskis Sub-Tasks 5

own deque in LIFO order by
popping (sub-)tasks from the
from of its own deque

Sub-Task, , Sub-Task; ,

S
Pool of worker threa®

“LIFO” pop/push enhances locality of reference & improves cache performance

Overview of Java Fork-Join Framework Internals

 To maximize core utilization, idle workQueue WorkOueue WorkQueue
worker threads “steal” work from /S
the tail of busy threads’ deques \
Sub-Task; ,

Sub-Task, , = | Sub-Tasks,

S
‘\:q Pool of worker thre'{?

.-\.‘-L"'-:-..____ —

See docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

http://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

Overview of Java Fork-Join Framework Internals

 To maximize core utilization, idle workQueue WorkOueue WorkQueue
worker threads “steal” work from /S
the tail of busy threads’ deques \
Sub-Task; ,

Sub-Task, , Sub-Task; ,

Worker threads to steal from are selected randomly to lower contention

Overview of Java Fork-Join Framework Internals

 To maximize core utilization, idle
worker threads “steal” work from
the tail of busy threads’ deques

» Tasks are stolen in FIFO order
since an older stolen task may
provide a larger unit of work

WorkQueue

WorkOueue

WorkQueue

Sub-Task, ,

Sub-Task, ,

Sub-Task; ,

Overview of Java Fork-Join Framework Internals

 To maximize core utilization, idle workQueue WorkOueue WorkQueue
worker threads “steal” work from A28
the tail of busy threads’ deques \
Sub-Task, ,

» Tasks are stolen in FIFO order
since an older stolen task may | SuP-Taskis
provide a larger unit of work Sub-Task, ,

» Enables further recursive
decompositions by the
stealing thread

Sub-Task; ,

55

Overview of Java Fork-Join Framework Internals

 The WorkQueue deque that implements work-

stealing minimizes locking contention _)é . 4Stealmg

p... o Pushing
L4

éé [[efe[e] | | Deque

Base Top

pop().._ - Popping .

éé L [T Jefel]

See www.dre.vanderbilt.edu/—schmidt/PDF/work-stealing-deque.pdf

http://www.dre.vanderbilt.edu/%7Eschmidt/PDF/work-stealing-dequeue.pdf

Overview of Java Fork-Join Framework Internals

 The WorkQueue deque that implements work-)
stealing minimizes locking contention _)é Stealing

[>4
e push() & pop() are only called by the]

| A
owning worker thread |
' push() Pushiﬁg
i '
éé \ _["Telel®] | | Deque

Base Top

pop(). » Popping

ég LTI Tefel]

o7

Overview of Java Fork-Join Framework Internals

 The WorkQueue deque that implements work-

stealing minimizes locking contention _>§ . (Steallng
+ push() & pop() are only called by the Jooio
owning worker thread /
 These operations use wait-free “compare- ‘push()
and-swap” (CAS) operations /7 Pushing

o / / '
éé . [I7Te[e[e] T | peque

. Base Top

pop () . P P Opp lflg . .

éé LI el
N

See en.wikipedia.org/wiki/Compare-and-swap

https://en.wikipedia.org/wiki/Compare-and-swap

Overview of Java Fork-Join Framework Internals

 The WorkQueue deque that implements work-

stealing minimizes locking contention

» poll() may be called from another
worker thread to “steal” a (sub-)task

Stealing
—>-§ |] v

/ pollQ
/ push
: PUs O Pushing
eé \ _["Telel®] | | Deque

" Base Top

pop « P Popping

ég LTI Tefel]

59

Overview of Java Fork-Join Framework In_te__rnals

 The WorkQueue deque that implements work-

stealing minimizes locking contention _)é . (Stealing
: §0||()
 poll() may be called from another T
worker thread to “steal” a (sub-)task A Pushing
« May not always be wait-free *‘é . [IIelelel T Deque
.. Base Top

YIELD

pop(). » Popping

ég LTI Tefel]

See ForkJoinPool “Implementation Overview” comments for detalils..

End of the Java Fork-Join
Pool Framework (Part 1)

61

	Slide Number 1
	Learning Objectives in this Part of the Lesson
	Learning Objectives in this Part of the Lesson
	Learning Objectives in this Part of the Lesson
	Overview of the Java Fork-Join Pool Computation Model
	Overview of the Java Fork-Join Pool Computation Model
	Overview of the Java Fork-Join Pool Computation Model
	Overview of the Java Fork-Join Pool Computation Model
	Overview of the Java Fork-Join Pool Computation Model
	Overview of the Java Fork-Join Pool Computation Model
	Overview of the Java Fork-Join Pool Computation Model
	Overview of the Java Fork-Join Pool Computation Model
	Overview of the Java Fork-Join Pool Computation Model
	Overview of the Java Fork-Join Pool Computation Model
	Overview of the Java Fork-Join Pool Computation Model
	Overview of the Java Fork-Join Pool Computation Model
	Overview of the Java Fork-Join Pool Computation Model
	Overview of the Java Fork-Join Pool Computation Model
	Overview of the Java Fork-Join Pool Computation Model
	Overview of the Java Fork-Join Pool Computation Model
	The Fork-Join Framework Structure �& Functionality
	The Fork-Join Framework Structure & Functionality
	The Fork-Join Framework Structure & Functionality
	The Fork-Join Framework Structure & Functionality
	The Fork-Join Framework Structure & Functionality
	The Fork-Join Framework Structure & Functionality
	The Fork-Join Framework Structure & Functionality
	Overview of Java Fork-Join Framework Internals
	The Fork-Join Framework Structure & Functionality
	The Fork-Join Framework Structure & Functionality
	The Fork-Join Framework Structure & Functionality
	The Fork-Join Framework Structure & Functionality
	The Fork-Join Framework Structure & Functionality
	The Fork-Join Framework Structure & Functionality
	The Fork-Join Framework Structure & Functionality
	The Fork-Join Framework Structure & Functionality
	The Fork-Join Framework Structure & Functionality
	The Fork-Join Framework Structure & Functionality
	The Fork-Join Framework Structure & Functionality
	The Fork-Join Framework Structure & Functionality
	The Fork-Join Framework Structure & Functionality
	The Fork-Join Framework Structure & Functionality
	The Fork-Join Framework Structure & Functionality
	The Fork-Join Framework Structure & Functionality
	The Fork-Join Framework Structure & Functionality
	Overview of Java Fork-Join Framework Internals
	Overview of Java Fork-Join Framework Internals
	Overview of Java Fork-Join Framework Internals
	Overview of Java Fork-Join Framework Internals
	Overview of Java Fork-Join Framework Internals
	Overview of Java Fork-Join Framework Internals
	Overview of Java Fork-Join Framework Internals
	Overview of Java Fork-Join Framework Internals
	Overview of Java Fork-Join Framework Internals
	Overview of Java Fork-Join Framework Internals
	Overview of Java Fork-Join Framework Internals
	Overview of Java Fork-Join Framework Internals
	Overview of Java Fork-Join Framework Internals
	Overview of Java Fork-Join Framework Internals
	Overview of Java Fork-Join Framework Internals
	End of the Java Fork-Join Pool Framework (Part 1)

