The Android Linux Kernel (Part 1): Primary & Secondary Storage Mechanisms

Douglas C. Schmidt <u>d.schmidt@vanderbilt.edu</u> www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software Integrated Systems

Vanderbilt University Nashville, Tennessee, USA

Learning Objectives in this Part of the Lesson

 Recognize the two types of storage supported by Android Linux: *primary & secondary storage*

OMPI TE E

Overview of Android Linux Primary & Secondary Storage Mechanisms

• Android's software instructions & data reside in two different types of storage

See en.wikipedia.org/wiki/Computer_data_storage

- Android's software instructions & data reside in two different types of storage
 - **Primary storage** Fast random access memory (RAM)

See en.wikipedia.org/wiki/Computer_data_storage#Primary_storage

- Android's software instructions & data reside in two different types of storage
 - Primary storage Fast random access memory (RAM)
 - The contents of volatile RAM are wiped out whenever a device is rebooted or loses power

See en.wikipedia.org/wiki/Volatile_memory

- Android's software instructions & data reside in two different types of storage
 - **Primary storage** Fast random access memory (RAM)
 - Secondary storage Slower flash memory

See en.wikipedia.org/wiki/Computer_data_storage#Secondary_storage

- Android's software instructions & data reside in two different types of storage
 - Primary storage Fast random access memory (RAM)
 - Secondary storage Slower flash memory
 - Flash is persistent storage that can be erased & reprogrammed electronically

See <u>en.wikipedia.org/wiki/Flash_memory</u>

See en.wikipedia.org/wiki/Memory_hierarchy

See <u>en.wikipedia.org/wiki/Memory_bandwidth</u>

- In general, being "higher" in this hierarchy has several implications, e.g.
 - Memory bandwidth is faster
 - i.e., rate at which data can be read from or stored into

large size

- In general, being "higher" in this hierarchy has several implications, e.g.
 - Memory bandwidth is faster
 - CPU access latency is lower
 - i.e., time interval between when CPU initiates a call for fetch or store data & when the call completes

- In general, being "higher" in this hierarchy has several implications, e.g.
 - Memory bandwidth is faster
 - CPU access latency is lower
 - Cost is greater
 - i.e., "faster" == "costlier"

See www.differencebetween.com/difference-between-primary-and-vs-secondary-memory

• Processor cores operate on instructions & their associated data that reside in RAM

See <u>en.wikipedia.org/wiki/Central_processing_unit#Operation</u>

- Processor cores operate on instructions & their associated data that reside in RAM
 - Android Linux executes in kernel space RAM

See www.linfo.org/kernel_space.html

- Processor cores operate on instructions & their associated data that reside in RAM
 - Android Linux executes in kernel space RAM
 - Kernel space is a protected region of RAM for running privileged operations

See en.wikipedia.org/wiki/CPU_modes

- Processor cores operate on instructions & their associated data that reside in RAM
 - Android Linux executes in kernel space RAM
 - Kernel space is a protected region of RAM for running privileged operations
 - Kernel space can be accessed by user processes only via *system calls*

See en.wikipedia.org/wiki/System_call

- Processor cores operate on instructions & their associated data that reside in RAM
 - Android Linux executes in kernel space RAM
 - All Android apps execute in user space RAM

See en.wikipedia.org/wiki/User_space

- Processor cores operate on instructions & their associated data that reside in RAM
 - Android Linux executes in kernel space RAM
 - All Android apps execute in user space RAM
 - User space is a more restrictive protection domain than kernel space

See www.linfo.org/user_space.html

- Processor cores operate on instructions & their associated data that reside in RAM
 - Android Linux executes in kernel space RAM
 - All Android apps execute in user space RAM
 - User space is a more restrictive protection domain than kernel space
 - Apps running in user space normally can't access RAM of other apps, unless explicitly allowed

See "anonymous shared memory" discussion in part 3 of this lesson

• The cost & performance of primary & secondary storage has improved substantially in recent years

See en.wikipedia.org/wiki/Random-access_memory#Recent_developments

 Primary storage (RAM) on Android mobile devices is constrained

See developer.android.com/training/articles/memory.html

- Primary storage (RAM) on Android mobile devices is constrained, e.g.
 - Form factor

In 2017 2-4 GB is common for mobile devices versus 8-64 GB on a desktop or laptop

- Primary storage (RAM) on Android mobile devices is constrained, e.g.
 - Form factor
 - Price points

Lower cost mobile devices typically have much less RAM than higher cost devices

features address memory constraints

See <u>en.wikipedia.org/wiki/Virtual_memory</u>

- (Android) Linux's virtual memory manager features address memory constraints, e.g.
 - Helps conserve RAM by not moving app instructions & data from secondary to primary storage until they are accessed

- (Android) Linux's virtual memory manager features address memory constraints, e.g.
 - Helps conserve RAM by not moving app instructions & data from secondary to primary storage until they are accessed
 - Accelerates I/O operations via memory mapping of files & hardware devices

See en.wikipedia.org/wiki/Memory-mapped_file

- (Android) Linux's virtual memory manager features address memory constraints, e.g.
 - Helps conserve RAM by not moving app instructions & data from secondary to primary storage until they are accessed
 - Accelerates I/O operations via memory mapping of files & hardware devices
 - Protects an app's private data in RAM from other apps

See en.wikipedia.org/wiki/Memory_management_unit

• Secondary storage in Android Linux is used to save data persistently

Mechanisms	Persistent Capability
Shared Preferences	Store private primitive data in key-value pairs
External Storage	Store public data on the shared external storage
Internal Storage	Store private data on the device memory
SQLite Databases	Store structured data in a private database

See developer.android.com/guide/topics/data/data-storage.html

• Secondary storage in Android Linux is used to save data persistently

Mechanisms	Persistent Capability
Shared Preferences	Store private primitive data in key-value pairs
External Storage	Store public data on the shared external storage
Internal Storage	Store private data on the device memory
SQLite Databases	Store structured data in a private database

• Secondary storage in Android Linux is used to save data persistently

Mechanisms	Persistent Capability
Shared Preferences	Store private primitive data in key-value pairs
External Storage	Store public data on the shared external storage
Internal Storage	Store private data on the device memory
SQLite Databases	Store structured data in a private database

Android has been progressively enhancing security of external storage over time..

• Secondary storage in Android Linux is used to save data persistently

Mechanisms	Persistent Capability
Shared Preferences	Store private primitive data in key-value pairs
External Storage	Store public data on the shared external storage
Internal Storage	Store private data on the device memory
SQLite Databases	Store structured data in a private database

• Secondary storage in Android Linux is used to save data persistently

Mechanisms	Persistent Capability
Shared Preferences	Store private primitive data in key-value pairs
External Storage	Store public data on the shared external storage
Internal Storage	Store private data on the device memory
SQLite Databases	Store structured data in a private database

• Android Linux supports secondary storage via its Virtual File System (VFS) framework

User Space

See www.all-things-android.com/content/understanding-android-file-hierarchy

- Android Linux supports secondary storage via its Virtual File System (VFS) framework
 - Each file system is implemented via a kernel module that registers the operations that it supports with VFS

User Space

See en.wikipedia.org/wiki/Loadable_kernel_module

- Android Linux supports secondary storage via its Virtual File System (VFS) framework
 - Each file system is implemented via a kernel module that registers the operations that it supports with VFS
 - Android Linux file systems support "flash memory" files that can be erased/reprogrammed electronically

User Space

Kernel

Space

See <u>en.wikipedia.org/wiki/Flash_memory</u>

End of the Android Linux Kernel: (Part 1) Primary & **Secondary Storage** Mechanisms