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Learning Objectives in this Lesson
• Understand key programming paradigms supported in Java 8

Java 
8e.g., C++,

Java, C#
e.g., C, 

FORTRAN
e.g., ML,
Haskell e.g., Prolog
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Overview of 
Programming Paradigms 

in Java 8



5See www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html

• Java 8 was released in March 2014

http://www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html


6See docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html

• Java 8 was released in March 2014

https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html


7See docs.oracle.com/javase/tutorial/collections/streams

• Java 8 was released in March 2014

https://docs.oracle.com/javase/tutorial/collections/streams


8See www.deadcoderising.com/why-you-should-embrace-lambdas-in-java-8

Overview of Programming Paradigms in Java 8
• Java 8 is a “hybrid” that combines the object-oriented & functional paradigms

Java 
8e.g., C++,

Java, C#
e.g., C, 

FORTRAN
e.g., ML,
Haskell e.g., Prolog

http://www.deadcoderising.com/why-you-should-embrace-lambdas-in-java-8
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Overview of Programming Paradigms in Java 8
• Object-oriented programming is an “imperative” paradigm

e.g., C++,
Java, C#

e.g., C, 
FORTRAN

See en.wikipedia.org/wiki/Imperative_programming

https://en.wikipedia.org/wiki/Imperative_programming
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Overview of Programming Paradigms in Java 8
• Object-oriented programming is an “imperative” paradigm

• e.g., a program consists of commands for the computer to perform

Imperative programming focuses on describing how a 
program operates via statements that change its state

e.g., C++,
Java, C#

e.g., C, 
FORTRAN
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Overview of Programming Paradigms in Java 8
• Object-oriented programming is an “imperative” paradigm

• e.g., a program consists of commands for the computer to perform
List<String> zap(List<String> lines, 

String omit) { 
List<String> res = 
new ArrayList<>(); 

for (String line : lines)  
if (!omit.equals(line)) 
res.add(line);   

return res; 
}

e.g., C++,
Java, C#

e.g., C, 
FORTRAN

Imperatively remove a designated 
string from a list of strings

Note how this code is inherently sequential..



12See en.wikipedia.org/wiki/Declarative_programming

Overview of Programming Paradigms in Java 8
• Conversely, functional programming is a “declarative” paradigm

e.g., Prologe.g., ML,
Haskell

http://en.wikipedia.org/wiki/Declarative_programming
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Overview of Programming Paradigms in Java 8
• Conversely, functional programming is a “declarative” paradigm

• e.g., a program expresses computational logic without describing control 
flow or explicit algorithmic steps

Declarative programming focuses on “what” 
computations to perform, not “how” to compute them

e.g., Prologe.g., ML,
Haskell
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Overview of Programming Paradigms in Java 8
• Conversely, functional programming is a “declarative” paradigm

• e.g., a program expresses computational logic without describing control 
flow or explicit algorithmic steps

Declaratively remove a designated 
string from a list of strings

List<String> zap(List<String> lines, 
String omit) { 

return lines
.stream()
.filter(line -> 

!omit.equals(line))
.collect(toList());

}
e.g., Prologe.g., ML,

Haskell



15

Overview of Programming Paradigms in Java 8
• Conversely, functional programming is a “declarative” paradigm

• e.g., a program expresses computational logic without describing control 
flow or explicit algorithmic steps

Note “fluent” programming style 
with cascading method calls

List<String> zap(List<String> lines, 
String omit) { 

return lines
.stream()
.filter(line -> 

!omit.equals(line))
.collect(toList());

}
e.g., Prologe.g., ML,

Haskell

See en.wikipedia.org/wiki/Fluent_interface

https://en.wikipedia.org/wiki/Fluent_interface
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Overview of Programming Paradigms in Java 8
• Conversely, functional programming is a “declarative” paradigm

• e.g., a program expresses computational logic without describing control 
flow or explicit algorithmic steps
List<String> zap(List<String> lines, 

String omit) { 
return lines

.parallelStream()

.filter(line -> 
!omit.equals(line))

.collect(toList());
}

e.g., Prologe.g., ML,
Haskell

Perform filtering 
in parallel



17Note how this code is can be parallelized with miniscule changes..

Overview of Programming Paradigms in Java 8
• Conversely, functional programming is a “declarative” paradigm

• e.g., a program expresses computational logic without describing control 
flow or explicit algorithmic steps

Perform filtering 
in parallel

List<String> zap(List<String> lines, 
String omit) { 

return lines
.parallelStream()
.filter(line -> 

!omit.equals(line))
.collect(toList());

}
e.g., Prologe.g., ML,

Haskell
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End of Overview of Java 8
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