
Overview of Java 8
Programming Paradigms

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt
Professor of Computer Science

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Lesson
• Understand key programming paradigms supported in Java 8

Java
8e.g., C++,

Java, C#
e.g., C,

FORTRAN
e.g., ML,
Haskell e.g., Prolog

4

Overview of
Programming Paradigms

in Java 8

5See www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html

• Java 8 was released in March 2014

http://www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html

6See docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html

• Java 8 was released in March 2014

https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html

7See docs.oracle.com/javase/tutorial/collections/streams

• Java 8 was released in March 2014

https://docs.oracle.com/javase/tutorial/collections/streams

8See www.deadcoderising.com/why-you-should-embrace-lambdas-in-java-8

Overview of Programming Paradigms in Java 8
• Java 8 is a “hybrid” that combines the object-oriented & functional paradigms

Java
8e.g., C++,

Java, C#
e.g., C,

FORTRAN
e.g., ML,
Haskell e.g., Prolog

http://www.deadcoderising.com/why-you-should-embrace-lambdas-in-java-8

9

Overview of Programming Paradigms in Java 8
• Object-oriented programming is an “imperative” paradigm

e.g., C++,
Java, C#

e.g., C,
FORTRAN

See en.wikipedia.org/wiki/Imperative_programming

https://en.wikipedia.org/wiki/Imperative_programming

10

Overview of Programming Paradigms in Java 8
• Object-oriented programming is an “imperative” paradigm

• e.g., a program consists of commands for the computer to perform

Imperative programming focuses on describing how a
program operates via statements that change its state

e.g., C++,
Java, C#

e.g., C,
FORTRAN

11

Overview of Programming Paradigms in Java 8
• Object-oriented programming is an “imperative” paradigm

• e.g., a program consists of commands for the computer to perform
List<String> zap(List<String> lines,

String omit) {
List<String> res =
new ArrayList<>();

for (String line : lines)
if (!omit.equals(line))
res.add(line);

return res;
}

e.g., C++,
Java, C#

e.g., C,
FORTRAN

Imperatively remove a designated
string from a list of strings

Note how this code is inherently sequential..

12See en.wikipedia.org/wiki/Declarative_programming

Overview of Programming Paradigms in Java 8
• Conversely, functional programming is a “declarative” paradigm

e.g., Prologe.g., ML,
Haskell

http://en.wikipedia.org/wiki/Declarative_programming

13

Overview of Programming Paradigms in Java 8
• Conversely, functional programming is a “declarative” paradigm

• e.g., a program expresses computational logic without describing control
flow or explicit algorithmic steps

Declarative programming focuses on “what”
computations to perform, not “how” to compute them

e.g., Prologe.g., ML,
Haskell

14

Overview of Programming Paradigms in Java 8
• Conversely, functional programming is a “declarative” paradigm

• e.g., a program expresses computational logic without describing control
flow or explicit algorithmic steps

Declaratively remove a designated
string from a list of strings

List<String> zap(List<String> lines,
String omit) {

return lines
.stream()
.filter(line ->

!omit.equals(line))
.collect(toList());

}
e.g., Prologe.g., ML,

Haskell

15

Overview of Programming Paradigms in Java 8
• Conversely, functional programming is a “declarative” paradigm

• e.g., a program expresses computational logic without describing control
flow or explicit algorithmic steps

Note “fluent” programming style
with cascading method calls

List<String> zap(List<String> lines,
String omit) {

return lines
.stream()
.filter(line ->

!omit.equals(line))
.collect(toList());

}
e.g., Prologe.g., ML,

Haskell

See en.wikipedia.org/wiki/Fluent_interface

https://en.wikipedia.org/wiki/Fluent_interface

16

Overview of Programming Paradigms in Java 8
• Conversely, functional programming is a “declarative” paradigm

• e.g., a program expresses computational logic without describing control
flow or explicit algorithmic steps
List<String> zap(List<String> lines,

String omit) {
return lines

.parallelStream()

.filter(line ->
!omit.equals(line))

.collect(toList());
}

e.g., Prologe.g., ML,
Haskell

Perform filtering
in parallel

17Note how this code is can be parallelized with miniscule changes..

Overview of Programming Paradigms in Java 8
• Conversely, functional programming is a “declarative” paradigm

• e.g., a program expresses computational logic without describing control
flow or explicit algorithmic steps

Perform filtering
in parallel

List<String> zap(List<String> lines,
String omit) {

return lines
.parallelStream()
.filter(line ->

!omit.equals(line))
.collect(toList());

}
e.g., Prologe.g., ML,

Haskell

25

End of Overview of Java 8

	Slide Number 1
	Learning Objectives in this Lesson
	Overview of Programming Paradigms in Java 8
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Overview of Programming Paradigms in Java 8
	Overview of Programming Paradigms in Java 8
	Overview of Programming Paradigms in Java 8
	Overview of Programming Paradigms in Java 8
	Overview of Programming Paradigms in Java 8
	Overview of Programming Paradigms in Java 8
	Overview of Programming Paradigms in Java 8
	Overview of Programming Paradigms in Java 8
	Overview of Programming Paradigms in Java 8
	Overview of Programming Paradigms in Java 8
	End of Overview of Java 8

