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• Know how Java 8 parallel streams are 
applied in the SearchStreamGang

• Understand the pros & cons of the 
SearchWithParallelStreams class

• Recognize how a parallel spliterator can 
improve parallel stream performance

• Understand the pros & cons of the 
SearchWithParallelSpliterator class

• Know when to use parallel streams

Learning Objectives in this Part of the Lesson
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• Know how Java 8 parallel streams are 
applied in the SearchStreamGang

• Understand the pros & cons of the 
SearchWithParallelStreams class

• Recognize how a parallel spliterator can 
improve parallel stream performance

• Understand the pros & cons of the 
SearchWithParallelSpliterator class

• Know when to use parallel streams 
• & when not to use parallel streams

Learning Objectives in this Part of the Lesson
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When to Use Java 8 
Parallel Streams
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When to Use Java 8 Parallel Streams
• A parallel program always does more work than a non-parallel program
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When to Use Java 8 Parallel Streams
• A parallel program always does more work than a non-parallel program, e.g.

• It needs to partition the problem

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

split

split split
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When to Use Java 8 Parallel Streams
• A parallel program always does more work than a non-parallel program, e.g.

• It needs to partition the problem
• It needs to perform processing

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

This step is typically all that a sequential program does!
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When to Use Java 8 Parallel Streams
• A parallel program always does more work than a non-parallel program, e.g.

• It needs to partition the problem
• It needs to perform processing
• It needs to combine the results

join joinjoin

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource
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When to Use Java 8 Parallel Streams
• Java 8 parallel streams are thus useful in some (but not all) conditions

http://gee.cs.oswego.edu/dl/html/StreamParallelGuidance.html
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When to Use Java 8 Parallel Streams
• Java 8 parallel streams are thus useful in some (but not all) conditions, e.g.

• When behaviors have certain 
properties
• Independent

See en.wikipedia.org/wiki/Embarrassingly_parallel

“Embarrassingly parallel” tasks have 
little/no dependency or need for 
communication between tasks or 
for sharing results between them

http://en.wikipedia.org/wiki/Embarrassingly_parallel
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When to Use Java 8 Parallel Streams
• Java 8 parallel streams are thus useful in some (but not all) conditions, e.g.

• When behaviors have certain 
properties
• Independent

• e.g., searching for phrases 
in a list of input strings

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

collect(toList())

45,000+ phrases

Search Phrases

Input Strings to Search

…

See github.com/douglascraigschmidt/LiveLessons/tree/master/SearchStreamGang

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SearchStreamGang
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When to Use Java 8 Parallel Streams
• Java 8 parallel streams are thus useful in some (but not all) conditions, e.g.

• When behaviors have certain 
properties
• Independent

• e.g., searching for phrases 
in a list of input strings
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When to Use Java 8 Parallel Streams
• Java 8 parallel streams are thus useful in some (but not all) conditions, e.g.

• When behaviors have certain 
properties
• Independent

• e.g., searching for phrases 
in a list of input strings

Parallel streams can:
• search chunks of 

phrases in parallel
• search chunks of input 

in parallel
• search chunks of each 

input string in parallel
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Parallel streams can:
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When to Use Java 8 Parallel Streams
• Java 8 parallel streams are thus useful in some (but not all) conditions, e.g.

• When behaviors have certain 
properties
• Independent

• e.g., searching for phrases 
in a list of input strings

Parallel streams can:
• search chunks of 

phrases in parallel
• search chunks of input 

in parallel
• search chunks of each 
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When to Use Java 8 Parallel Streams
• Java 8 parallel streams are thus useful in some (but not all) conditions, e.g.

• When behaviors have certain 
properties
• Independent

• e.g., searching for phrases 
in a list of input strings

SearchWithParallelSpliterator is the most aggressively concurrent strategy!

Parallel streams can:
• search chunks of 

phrases in parallel
• search chunks of input 

in parallel
• search chunks of each 

input string in parallel
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When to Use Java 8 Parallel Streams
• Java 8 parallel streams are thus useful in some (but not all) conditions, e.g.

• When behaviors have certain 
properties
• Independent
• Computationally expensive

• e.g., behaviors applied to
each input element take
a “long-time” to run

See www.ibm.com/developerworks/library/j-java-streams-5-brian-goetz

http://www.ibm.com/developerworks/library/j-java-streams-5-brian-goetz
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When to Use Java 8 Parallel Streams
• Java 8 parallel streams are thus useful in some (but not all) conditions, e.g.

• When behaviors have certain 
properties
• Independent
• Computationally expensive 
• Applied to many elements 

of data sources
• Where these sources can

be split efficiently/evenly

See www.ibm.com/developerworks/library/j-java-streams-5-brian-goetz

http://www.ibm.com/developerworks/library/j-java-streams-5-brian-goetz
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When to Use Java 8 Parallel Streams
• Java 8 parallel streams are thus useful in some (but not all) conditions, e.g.

• When behaviors have certain 
properties
• Independent
• Computationally expensive 
• Applied to many elements 

of data sources

See on-sw-integration.epischel.de/2016/08/05/parallel-stream-processing-with-java-8-stream-api

N
hilo

lo

hi

Q

Ideal

The “NQ” model: 
• N is the # of data items to process per thread
• Q quantifies how CPU-intensive the processing is

https://on-sw-integration.epischel.de/2016/08/05/parallel-stream-processing-with-java-8-stream-api
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When to Use Java 8 Parallel Streams
• Java 8 parallel streams are thus useful in some (but not all) conditions, e.g.

• When behaviors have certain 
properties
• Independent
• Computationally expensive 
• Applied to many elements 

of data sources

See SearchStreamGang/src/main/java/livelessons/utils/PhraseMatchSpliterator.java

e.g., PhraseMatchSpliterator
splits input strings into chunks that it 
searches for regex matches in parallel

collect() collect()
collect()

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

trySplit()

trySplit() trySplit()

https://github.com/douglascraigschmidt/LiveLessons/blob/master/SearchStreamGang/src/main/java/livelessons/utils/PhraseMatchSpliterator.java
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When to Use Java 8 Parallel Streams
• Java 8 parallel streams are thus useful in some (but not all) conditions, e.g.

• When behaviors have certain 
properties

• If there are multiple cores

See blog.oio.de/2016/01/22/parallel-stream-processing-in-java-
8-performance-of-sequential-vs-parallel-stream-processing

https://blog.oio.de/2016/01/22/parallel-stream-processing-in-java-8-performance-of-sequential-vs-parallel-stream-processing/
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Starting SearchStreamGangTest
PARALLEL_SPLITERATOR executed in 409 msecs
COMPLETABLE_FUTURES_INPUTS executed in 426 msecs
COMPLETABLE_FUTURES_PHASES executed in 427 msecs
PARALLEL_STREAMS executed in 437 msecs
PARALLEL_STREAM_PHASES executed in 440 msecs
RXJAVA_PHASES executed in 485 msecs
PARALLEL_STREAM_INPUTS executed in 802 msecs
RXJAVA_INPUTS executed in 866 msecs
SEQUENTIAL_LOOPS executed in 1638 msecs
SEQUENTIAL_STREAM executed in 1958 msecs
Ending SearchStreamGangTest

45,000+ phrases

Search Phrases

When to Use Java 8 Parallel Streams
• Under the right conditions Java 8 parallel 

streams can scale up nicely on multi-core
& many-core processors

See www.infoq.com/presentations/parallel-java-se-8

Input Strings to Search

…

http://www.infoq.com/presentations/parallel-java-se-8
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When Not to Use Java 
8 Parallel Streams
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When Not to Use Java 8 Parallel Streams
• Parallel streams aren’t suitable for 

certain types of programs

See www.ibm.com/developerworks/library/j-java-streams-5-brian-goetz

http://www.ibm.com/developerworks/library/j-java-streams-5-brian-goetz


25

When Not to Use Java 8 Parallel Streams
• Parallel streams aren’t suitable for 

certain types of programs, e.g.
• The source is expensive to 

split or splits unevenly

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex14

List<CharSequence> arrayAllWords =
TestDataFactory.getInput
(sSHAKESPEARE_WORKS, "\\s+");

List<CharSequence> listAllWords = 
new LinkedList<>(arrayAllWords);

arrayAllWords.parallelStream()
.count();

listAllWords.parallelStream()
.count();

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex14
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When Not to Use Java 8 Parallel Streams
• Parallel streams aren’t suitable for 

certain types of programs, e.g.
• The source is expensive to 

split or splits unevenly

List<CharSequence> arrayAllWords =
TestDataFactory.getInput
(sSHAKESPEARE_WORKS, "\\s+");

List<CharSequence> listAllWords = 
new LinkedList<>(arrayAllWords);

arrayAllWords.parallelStream()
.count();

listAllWords.parallelStream()
.count();

Make a LinkedList that 
contains all words in the 
works of Shakespeare
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When Not to Use Java 8 Parallel Streams
• Parallel streams aren’t suitable for 

certain types of programs, e.g.
• The source is expensive to 

split or splits unevenly

LinkedList splits poorly since finding the midpoint requires traversing ½ the list

The ArrayList parallel stream 
is much faster than the 

LinkedList parallel stream

List<CharSequence> arrayAllWords =
TestDataFactory.getInput
(sSHAKESPEARE_WORKS, "\\s+");

List<CharSequence> listAllWords = 
new LinkedList<>(arrayAllWords);

arrayAllWords.parallelStream()
.count();

listAllWords.parallelStream()
.count();
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When Not to Use Java 8 Parallel Streams
• Parallel streams aren’t suitable for 

certain types of programs, e.g.
• The source is expensive to 

split or splits unevenly

The ArrayList spliterator
runs in O(1) constant time

class ArrayListSpliterator {
...
ArrayListSpliterator<E> 
trySplit() {
int hi = getFence(), lo = 
index, mid = (lo + hi) >>> 1;

return lo >= mid 
? null 
: new 
ArrayListSpliterator<E>
(list, lo, index = mid,
expectedModCount);

}
...

See openjdk/8u40-b25/java/util/ArrayList.java

http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/8u40-b25/java/util/ArrayList.java
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When Not to Use Java 8 Parallel Streams
• Parallel streams aren’t suitable for 

certain types of programs, e.g.
• The source is expensive to 

split or splits unevenly

The LinkedList spliterator
runs in O(n) linear time

class LLSpliterator {
...
public Spliterator<E> trySplit(){
...
int n = batch + BATCH_UNIT;
...
Object[] a = new Object[n];
int j = 0;
do { a[j++] = p.item; } 
while ((p = p.next) != null 

&& j < n);
...
return Spliterators
.spliterator(a, 0, j, 

Spliterator.ORDERED);

See openjdk/8-b132/java/util/LinkedList.java

http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/8-b132/java/util/LinkedList.java
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When Not to Use Java 8 Parallel Streams
• Parallel streams aren’t suitable for 

certain types of programs, e.g.
• The source is expensive to 

split or splits unevenly
• The startup costs of parallelism

overwhelm the amount of data

class ParallelStreamFactorial {
BigInteger factorial(long n) {
return LongStream
.rangeClosed(1, n)
.parallel() ... 
.reduce(BigInteger.ONE,

BigInteger::multiply);
...

class SequentialStreamFactorial {
BigInteger factorial(long n) {
return LongStream
.rangeClosed(1, n) ...
.reduce(BigInteger.ONE,

BigInteger::multiply);
...

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16
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When Not to Use Java 8 Parallel Streams
• Parallel streams aren’t suitable for 

certain types of programs, e.g.
• The source is expensive to 

split or splits unevenly
• The startup costs of parallelism

overwhelm the amount of data

The overhead of creating a parallel 
stream is > than the benefits of 
parallelism for small values of ‘n’

class ParallelStreamFactorial {
BigInteger factorial(long n) {
return LongStream
.rangeClosed(1, n)
.parallel() ... 
.reduce(BigInteger.ONE,

BigInteger::multiply);
...

class SequentialStreamFactorial {
BigInteger factorial(long n) {
return LongStream
.rangeClosed(1, n) ...
.reduce(BigInteger.ONE,

BigInteger::multiply);
...

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16
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When Not to Use Java 8 Parallel Streams
• Parallel streams aren’t suitable for 

certain types of programs, e.g.
• The source is expensive to 

split or splits unevenly
• The startup costs of parallelism

overwhelm the amount of data
• Combining partial results is costly

List<CharSequence> allWords =
new LinkedList<>
(TestDataFactory.getInput

(sSHAKESPEARE_DATA_FILE,
"\\s+"));

...

Set<CharSequence> uniqueWords = 
allWords
.parallelStream()
...
.collect(toCollection

(TreeSet::new));

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex14
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When Not to Use Java 8 Parallel Streams
• Parallel streams aren’t suitable for 

certain types of programs, e.g.
• The source is expensive to 

split or splits unevenly
• The startup costs of parallelism

overwhelm the amount of data
• Combining partial results is costly

List<CharSequence> allWords =
new LinkedList<>
(TestDataFactory.getInput

(sSHAKESPEARE_DATA_FILE,
"\\s+"));

...

Set<CharSequence> uniqueWords = 
allWords
.parallelStream()
...
.collect(toCollection

(TreeSet::new));
Performance will be poor due to the 

overhead of combining partial 
results for a Set in a parallel stream

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex14

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex14
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When Not to Use Java 8 Parallel Streams
• Parallel streams aren’t suitable for 

certain types of programs, e.g.
• The source is expensive to 

split or splits unevenly
• The startup costs of parallelism

overwhelm the amount of data
• Combining partial results is costly

List<CharSequence> allWords =
new LinkedList<>
(TestDataFactory.getInput

(sSHAKESPEARE_DATA_FILE,
"\\s+"));

...

Set<CharSequence> uniqueWords = 
allWords
.parallelStream()
...
.collect(toCollection

(TreeSet::new));The combining cost can be alleviated 
by the amount of work performed 
per element (i.e., the “NQ model”)

See www.ibm.com/developerworks/library/j-java-streams-5-brian-goetz

http://www.ibm.com/developerworks/library/j-java-streams-5-brian-goetz
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When Not to Use Java 8 Parallel Streams
• Parallel streams aren’t suitable for 

certain types of programs, e.g.
• The source is expensive to 

split or splits unevenly
• The startup costs of parallelism

overwhelm the amount of data
• Combining partial results is costly
• A Java 8 feature doesn't enable 

sufficient exploitable parallelism

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex15

List<Double> result = Stream
.iterate(2, i -> i + 1)
.parallel()
.filter(this::isEven)
.limit(number)
.map(this::findSQRT)
.collect(toList());

List<Double> result = LongStream
.range(2, (number * 2) + 1)
.parallel()
.filter(this::isEven)
.mapToObj(this::findSQRT)
.collect(toList());

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex15
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When Not to Use Java 8 Parallel Streams
• Parallel streams aren’t suitable for 

certain types of programs, e.g.
• The source is expensive to 

split or splits unevenly
• The startup costs of parallelism

overwhelm the amount of data
• Combining partial results is costly
• A Java 8 feature doesn't enable 

sufficient exploitable parallelism

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex15

List<Double> result = Stream
.iterate(2, i -> i + 1)
.parallel()
.filter(this::isEven)
.limit(number)
.map(this::findSQRT)
.collect(toList());

List<Double> result = LongStream
.range(2, (number * 2) + 1)
.parallel()
.filter(this::isEven)
.mapToObj(this::findSQRT)
.collect(toList());

Stream.iterate() & limit() 
split & parallelize poorly…

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex15
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When Not to Use Java 8 Parallel Streams
• Parallel streams aren’t suitable for 

certain types of programs, e.g.
• The source is expensive to 

split or splits unevenly
• The startup costs of parallelism

overwhelm the amount of data
• Combining partial results is costly
• A Java 8 feature doesn't enable 

sufficient exploitable parallelism

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex15

List<Double> result = Stream
.iterate(2, i -> i + 1)
.parallel()
.filter(this::isEven)
.limit(number)
.map(this::findSQRT)
.collect(toList());

List<Double> result = LongStream
.range(2, (number * 2) + 1)
.parallel()
.filter(this::isEven)
.mapToObj(this::findSQRT)
.collect(toList());

LongStream.range() splits nicely 
& thus runs efficiently in parallel

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex15
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When Not to Use Java 8 Parallel Streams
• Parallel streams aren’t suitable for 

certain types of programs, e.g.
• The source is expensive to 

split or splits unevenly
• The startup costs of parallelism

overwhelm the amount of data
• Combining partial results is costly
• A Java 8 feature doesn't enable 

sufficient exploitable parallelism
• There aren’t many/any cores

Older computing devices just have a single 
core, which limits available parallelism
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End of Java 8 Parallel 
SearchStreamGang Example 

(Part 3)
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