
Java 8 Parallel SearchStreamGang
Example (Part 3)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software 
Integrated Systems

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

• Know how Java 8 parallel streams are 
applied in the SearchStreamGang

• Understand the pros & cons of the 
SearchWithParallelStreams class

• Recognize how a parallel spliterator can 
improve parallel stream performance

• Understand the pros & cons of the 
SearchWithParallelSpliterator class

• Know when to use parallel streams

Learning Objectives in this Part of the Lesson



3

• Know how Java 8 parallel streams are 
applied in the SearchStreamGang

• Understand the pros & cons of the 
SearchWithParallelStreams class

• Recognize how a parallel spliterator can 
improve parallel stream performance

• Understand the pros & cons of the 
SearchWithParallelSpliterator class

• Know when to use parallel streams 
• & when not to use parallel streams

Learning Objectives in this Part of the Lesson



4

When to Use Java 8 
Parallel Streams



5

When to Use Java 8 Parallel Streams
• A parallel program always does more work than a non-parallel program



6

When to Use Java 8 Parallel Streams
• A parallel program always does more work than a non-parallel program, e.g.

• It needs to partition the problem

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

split

split split



7

When to Use Java 8 Parallel Streams
• A parallel program always does more work than a non-parallel program, e.g.

• It needs to partition the problem
• It needs to perform processing

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

This step is typically all that a sequential program does!



8

When to Use Java 8 Parallel Streams
• A parallel program always does more work than a non-parallel program, e.g.

• It needs to partition the problem
• It needs to perform processing
• It needs to combine the results

join joinjoin

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource



9See gee.cs.oswego.edu/dl/html/StreamParallelGuidance.html

When to Use Java 8 Parallel Streams
• Java 8 parallel streams are thus useful in some (but not all) conditions

http://gee.cs.oswego.edu/dl/html/StreamParallelGuidance.html


10

When to Use Java 8 Parallel Streams
• Java 8 parallel streams are thus useful in some (but not all) conditions, e.g.

• When behaviors have certain 
properties
• Independent

See en.wikipedia.org/wiki/Embarrassingly_parallel

“Embarrassingly parallel” tasks have 
little/no dependency or need for 
communication between tasks or 
for sharing results between them

http://en.wikipedia.org/wiki/Embarrassingly_parallel


11

When to Use Java 8 Parallel Streams
• Java 8 parallel streams are thus useful in some (but not all) conditions, e.g.

• When behaviors have certain 
properties
• Independent

• e.g., searching for phrases 
in a list of input strings

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

collect(toList())

45,000+ phrases

Search Phrases

Input Strings to Search

…

See github.com/douglascraigschmidt/LiveLessons/tree/master/SearchStreamGang

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SearchStreamGang


12

When to Use Java 8 Parallel Streams
• Java 8 parallel streams are thus useful in some (but not all) conditions, e.g.

• When behaviors have certain 
properties
• Independent

• e.g., searching for phrases 
in a list of input strings



13

When to Use Java 8 Parallel Streams
• Java 8 parallel streams are thus useful in some (but not all) conditions, e.g.

• When behaviors have certain 
properties
• Independent

• e.g., searching for phrases 
in a list of input strings

Parallel streams can:
• search chunks of 

phrases in parallel
• search chunks of input 

in parallel
• search chunks of each 

input string in parallel



14

When to Use Java 8 Parallel Streams
• Java 8 parallel streams are thus useful in some (but not all) conditions, e.g.

• When behaviors have certain 
properties
• Independent

• e.g., searching for phrases 
in a list of input strings

Parallel streams can:
• search chunks of 

phrases in parallel
• search chunks of input 

in parallel
• search chunks of each 

input string in parallel



15

When to Use Java 8 Parallel Streams
• Java 8 parallel streams are thus useful in some (but not all) conditions, e.g.

• When behaviors have certain 
properties
• Independent

• e.g., searching for phrases 
in a list of input strings

Parallel streams can:
• search chunks of 

phrases in parallel
• search chunks of input 

in parallel
• search chunks of each 

input string in parallel



16

When to Use Java 8 Parallel Streams
• Java 8 parallel streams are thus useful in some (but not all) conditions, e.g.

• When behaviors have certain 
properties
• Independent

• e.g., searching for phrases 
in a list of input strings

SearchWithParallelSpliterator is the most aggressively concurrent strategy!

Parallel streams can:
• search chunks of 

phrases in parallel
• search chunks of input 

in parallel
• search chunks of each 

input string in parallel



17

When to Use Java 8 Parallel Streams
• Java 8 parallel streams are thus useful in some (but not all) conditions, e.g.

• When behaviors have certain 
properties
• Independent
• Computationally expensive

• e.g., behaviors applied to
each input element take
a “long-time” to run

See www.ibm.com/developerworks/library/j-java-streams-5-brian-goetz

http://www.ibm.com/developerworks/library/j-java-streams-5-brian-goetz


18

When to Use Java 8 Parallel Streams
• Java 8 parallel streams are thus useful in some (but not all) conditions, e.g.

• When behaviors have certain 
properties
• Independent
• Computationally expensive 
• Applied to many elements 

of data sources
• Where these sources can

be split efficiently/evenly

See www.ibm.com/developerworks/library/j-java-streams-5-brian-goetz

http://www.ibm.com/developerworks/library/j-java-streams-5-brian-goetz


19

When to Use Java 8 Parallel Streams
• Java 8 parallel streams are thus useful in some (but not all) conditions, e.g.

• When behaviors have certain 
properties
• Independent
• Computationally expensive 
• Applied to many elements 

of data sources

See on-sw-integration.epischel.de/2016/08/05/parallel-stream-processing-with-java-8-stream-api

N
hilo

lo

hi

Q

Ideal

The “NQ” model: 
• N is the # of data items to process per thread
• Q quantifies how CPU-intensive the processing is

https://on-sw-integration.epischel.de/2016/08/05/parallel-stream-processing-with-java-8-stream-api


20

When to Use Java 8 Parallel Streams
• Java 8 parallel streams are thus useful in some (but not all) conditions, e.g.

• When behaviors have certain 
properties
• Independent
• Computationally expensive 
• Applied to many elements 

of data sources

See SearchStreamGang/src/main/java/livelessons/utils/PhraseMatchSpliterator.java

e.g., PhraseMatchSpliterator
splits input strings into chunks that it 
searches for regex matches in parallel

collect() collect()
collect()

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

trySplit()

trySplit() trySplit()

https://github.com/douglascraigschmidt/LiveLessons/blob/master/SearchStreamGang/src/main/java/livelessons/utils/PhraseMatchSpliterator.java


21

When to Use Java 8 Parallel Streams
• Java 8 parallel streams are thus useful in some (but not all) conditions, e.g.

• When behaviors have certain 
properties

• If there are multiple cores

See blog.oio.de/2016/01/22/parallel-stream-processing-in-java-
8-performance-of-sequential-vs-parallel-stream-processing

https://blog.oio.de/2016/01/22/parallel-stream-processing-in-java-8-performance-of-sequential-vs-parallel-stream-processing/


22

Starting SearchStreamGangTest
PARALLEL_SPLITERATOR executed in 409 msecs
COMPLETABLE_FUTURES_INPUTS executed in 426 msecs
COMPLETABLE_FUTURES_PHASES executed in 427 msecs
PARALLEL_STREAMS executed in 437 msecs
PARALLEL_STREAM_PHASES executed in 440 msecs
RXJAVA_PHASES executed in 485 msecs
PARALLEL_STREAM_INPUTS executed in 802 msecs
RXJAVA_INPUTS executed in 866 msecs
SEQUENTIAL_LOOPS executed in 1638 msecs
SEQUENTIAL_STREAM executed in 1958 msecs
Ending SearchStreamGangTest

45,000+ phrases

Search Phrases

When to Use Java 8 Parallel Streams
• Under the right conditions Java 8 parallel 

streams can scale up nicely on multi-core
& many-core processors

See www.infoq.com/presentations/parallel-java-se-8

Input Strings to Search

…

http://www.infoq.com/presentations/parallel-java-se-8


23

When Not to Use Java 
8 Parallel Streams



24

When Not to Use Java 8 Parallel Streams
• Parallel streams aren’t suitable for 

certain types of programs

See www.ibm.com/developerworks/library/j-java-streams-5-brian-goetz

http://www.ibm.com/developerworks/library/j-java-streams-5-brian-goetz


25

When Not to Use Java 8 Parallel Streams
• Parallel streams aren’t suitable for 

certain types of programs, e.g.
• The source is expensive to 

split or splits unevenly

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex14

List<CharSequence> arrayAllWords =
TestDataFactory.getInput
(sSHAKESPEARE_WORKS, "\\s+");

List<CharSequence> listAllWords = 
new LinkedList<>(arrayAllWords);

arrayAllWords.parallelStream()
.count();

listAllWords.parallelStream()
.count();

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex14


26

When Not to Use Java 8 Parallel Streams
• Parallel streams aren’t suitable for 

certain types of programs, e.g.
• The source is expensive to 

split or splits unevenly

List<CharSequence> arrayAllWords =
TestDataFactory.getInput
(sSHAKESPEARE_WORKS, "\\s+");

List<CharSequence> listAllWords = 
new LinkedList<>(arrayAllWords);

arrayAllWords.parallelStream()
.count();

listAllWords.parallelStream()
.count();

Make a LinkedList that 
contains all words in the 
works of Shakespeare



27

When Not to Use Java 8 Parallel Streams
• Parallel streams aren’t suitable for 

certain types of programs, e.g.
• The source is expensive to 

split or splits unevenly

LinkedList splits poorly since finding the midpoint requires traversing ½ the list

The ArrayList parallel stream 
is much faster than the 

LinkedList parallel stream

List<CharSequence> arrayAllWords =
TestDataFactory.getInput
(sSHAKESPEARE_WORKS, "\\s+");

List<CharSequence> listAllWords = 
new LinkedList<>(arrayAllWords);

arrayAllWords.parallelStream()
.count();

listAllWords.parallelStream()
.count();



28

When Not to Use Java 8 Parallel Streams
• Parallel streams aren’t suitable for 

certain types of programs, e.g.
• The source is expensive to 

split or splits unevenly

The ArrayList spliterator
runs in O(1) constant time

class ArrayListSpliterator {
...
ArrayListSpliterator<E> 
trySplit() {
int hi = getFence(), lo = 
index, mid = (lo + hi) >>> 1;

return lo >= mid 
? null 
: new 
ArrayListSpliterator<E>
(list, lo, index = mid,
expectedModCount);

}
...

See openjdk/8u40-b25/java/util/ArrayList.java

http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/8u40-b25/java/util/ArrayList.java


29

When Not to Use Java 8 Parallel Streams
• Parallel streams aren’t suitable for 

certain types of programs, e.g.
• The source is expensive to 

split or splits unevenly

The LinkedList spliterator
runs in O(n) linear time

class LLSpliterator {
...
public Spliterator<E> trySplit(){
...
int n = batch + BATCH_UNIT;
...
Object[] a = new Object[n];
int j = 0;
do { a[j++] = p.item; } 
while ((p = p.next) != null 

&& j < n);
...
return Spliterators
.spliterator(a, 0, j, 

Spliterator.ORDERED);

See openjdk/8-b132/java/util/LinkedList.java

http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/8-b132/java/util/LinkedList.java


30See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

When Not to Use Java 8 Parallel Streams
• Parallel streams aren’t suitable for 

certain types of programs, e.g.
• The source is expensive to 

split or splits unevenly
• The startup costs of parallelism

overwhelm the amount of data

class ParallelStreamFactorial {
BigInteger factorial(long n) {
return LongStream
.rangeClosed(1, n)
.parallel() ... 
.reduce(BigInteger.ONE,

BigInteger::multiply);
...

class SequentialStreamFactorial {
BigInteger factorial(long n) {
return LongStream
.rangeClosed(1, n) ...
.reduce(BigInteger.ONE,

BigInteger::multiply);
...

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16


31

When Not to Use Java 8 Parallel Streams
• Parallel streams aren’t suitable for 

certain types of programs, e.g.
• The source is expensive to 

split or splits unevenly
• The startup costs of parallelism

overwhelm the amount of data

The overhead of creating a parallel 
stream is > than the benefits of 
parallelism for small values of ‘n’

class ParallelStreamFactorial {
BigInteger factorial(long n) {
return LongStream
.rangeClosed(1, n)
.parallel() ... 
.reduce(BigInteger.ONE,

BigInteger::multiply);
...

class SequentialStreamFactorial {
BigInteger factorial(long n) {
return LongStream
.rangeClosed(1, n) ...
.reduce(BigInteger.ONE,

BigInteger::multiply);
...

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16


32See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex14

When Not to Use Java 8 Parallel Streams
• Parallel streams aren’t suitable for 

certain types of programs, e.g.
• The source is expensive to 

split or splits unevenly
• The startup costs of parallelism

overwhelm the amount of data
• Combining partial results is costly

List<CharSequence> allWords =
new LinkedList<>
(TestDataFactory.getInput

(sSHAKESPEARE_DATA_FILE,
"\\s+"));

...

Set<CharSequence> uniqueWords = 
allWords
.parallelStream()
...
.collect(toCollection

(TreeSet::new));

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex14


33

When Not to Use Java 8 Parallel Streams
• Parallel streams aren’t suitable for 

certain types of programs, e.g.
• The source is expensive to 

split or splits unevenly
• The startup costs of parallelism

overwhelm the amount of data
• Combining partial results is costly

List<CharSequence> allWords =
new LinkedList<>
(TestDataFactory.getInput

(sSHAKESPEARE_DATA_FILE,
"\\s+"));

...

Set<CharSequence> uniqueWords = 
allWords
.parallelStream()
...
.collect(toCollection

(TreeSet::new));
Performance will be poor due to the 

overhead of combining partial 
results for a Set in a parallel stream

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex14

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex14


34

When Not to Use Java 8 Parallel Streams
• Parallel streams aren’t suitable for 

certain types of programs, e.g.
• The source is expensive to 

split or splits unevenly
• The startup costs of parallelism

overwhelm the amount of data
• Combining partial results is costly

List<CharSequence> allWords =
new LinkedList<>
(TestDataFactory.getInput

(sSHAKESPEARE_DATA_FILE,
"\\s+"));

...

Set<CharSequence> uniqueWords = 
allWords
.parallelStream()
...
.collect(toCollection

(TreeSet::new));The combining cost can be alleviated 
by the amount of work performed 
per element (i.e., the “NQ model”)

See www.ibm.com/developerworks/library/j-java-streams-5-brian-goetz

http://www.ibm.com/developerworks/library/j-java-streams-5-brian-goetz


35

When Not to Use Java 8 Parallel Streams
• Parallel streams aren’t suitable for 

certain types of programs, e.g.
• The source is expensive to 

split or splits unevenly
• The startup costs of parallelism

overwhelm the amount of data
• Combining partial results is costly
• A Java 8 feature doesn't enable 

sufficient exploitable parallelism

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex15

List<Double> result = Stream
.iterate(2, i -> i + 1)
.parallel()
.filter(this::isEven)
.limit(number)
.map(this::findSQRT)
.collect(toList());

List<Double> result = LongStream
.range(2, (number * 2) + 1)
.parallel()
.filter(this::isEven)
.mapToObj(this::findSQRT)
.collect(toList());

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex15


36

When Not to Use Java 8 Parallel Streams
• Parallel streams aren’t suitable for 

certain types of programs, e.g.
• The source is expensive to 

split or splits unevenly
• The startup costs of parallelism

overwhelm the amount of data
• Combining partial results is costly
• A Java 8 feature doesn't enable 

sufficient exploitable parallelism

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex15

List<Double> result = Stream
.iterate(2, i -> i + 1)
.parallel()
.filter(this::isEven)
.limit(number)
.map(this::findSQRT)
.collect(toList());

List<Double> result = LongStream
.range(2, (number * 2) + 1)
.parallel()
.filter(this::isEven)
.mapToObj(this::findSQRT)
.collect(toList());

Stream.iterate() & limit() 
split & parallelize poorly…

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex15


37

When Not to Use Java 8 Parallel Streams
• Parallel streams aren’t suitable for 

certain types of programs, e.g.
• The source is expensive to 

split or splits unevenly
• The startup costs of parallelism

overwhelm the amount of data
• Combining partial results is costly
• A Java 8 feature doesn't enable 

sufficient exploitable parallelism

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex15

List<Double> result = Stream
.iterate(2, i -> i + 1)
.parallel()
.filter(this::isEven)
.limit(number)
.map(this::findSQRT)
.collect(toList());

List<Double> result = LongStream
.range(2, (number * 2) + 1)
.parallel()
.filter(this::isEven)
.mapToObj(this::findSQRT)
.collect(toList());

LongStream.range() splits nicely 
& thus runs efficiently in parallel

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex15


38

When Not to Use Java 8 Parallel Streams
• Parallel streams aren’t suitable for 

certain types of programs, e.g.
• The source is expensive to 

split or splits unevenly
• The startup costs of parallelism

overwhelm the amount of data
• Combining partial results is costly
• A Java 8 feature doesn't enable 

sufficient exploitable parallelism
• There aren’t many/any cores

Older computing devices just have a single 
core, which limits available parallelism



39

End of Java 8 Parallel 
SearchStreamGang Example 

(Part 3)


	Slide Number 1
	Learning Objectives in this Part of the Lesson
	Learning Objectives in this Part of the Lesson
	When to Use Java 8 Parallel Streams
	When to Use Java 8 Parallel Streams
	When to Use Java 8 Parallel Streams
	When to Use Java 8 Parallel Streams
	When to Use Java 8 Parallel Streams
	When to Use Java 8 Parallel Streams
	When to Use Java 8 Parallel Streams
	When to Use Java 8 Parallel Streams
	When to Use Java 8 Parallel Streams
	When to Use Java 8 Parallel Streams
	When to Use Java 8 Parallel Streams
	When to Use Java 8 Parallel Streams
	When to Use Java 8 Parallel Streams
	When to Use Java 8 Parallel Streams
	When to Use Java 8 Parallel Streams
	When to Use Java 8 Parallel Streams
	When to Use Java 8 Parallel Streams
	When to Use Java 8 Parallel Streams
	When to Use Java 8 Parallel Streams
	When Not to Use Java 8 Parallel Streams
	When Not to Use Java 8 Parallel Streams
	When Not to Use Java 8 Parallel Streams
	When Not to Use Java 8 Parallel Streams
	When Not to Use Java 8 Parallel Streams
	When Not to Use Java 8 Parallel Streams
	When Not to Use Java 8 Parallel Streams
	When Not to Use Java 8 Parallel Streams
	When Not to Use Java 8 Parallel Streams
	When Not to Use Java 8 Parallel Streams
	When Not to Use Java 8 Parallel Streams
	When Not to Use Java 8 Parallel Streams
	When Not to Use Java 8 Parallel Streams
	When Not to Use Java 8 Parallel Streams
	When Not to Use Java 8 Parallel Streams
	When Not to Use Java 8 Parallel Streams
	End of Java 8 Parallel SearchStreamGang Example (Part 3)

