
Overview of Basic Java 8 
CompletableFuture Features (Part 2)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software 
Integrated Systems

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

• Understand the basic completable
futures features

• Know how to apply these basic 
features to multiply big fractions

Learning Objectives in this Part of the Lesson

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8
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• Understand the basic completable
futures features

• Know how to apply these basic 
features to multiply big fractions

• Recognize limitations with 
these basic features

Learning Objectives in this Part of the Lesson
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Applying Basic Completable
Future Features
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Applying Basic Completable Future Features
• We show how to apply basic completable

future features in the context of BigFraction

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8
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Applying Basic Completable Future Features
• We show how to apply basic completable

future features in the context of BigFraction
• Arbitrary-precision fraction, utilizing 

BigIntegers for numerator & denominator

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8
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Applying Basic Completable Future Features
• We show how to apply basic completable

future features in the context of BigFraction
• Arbitrary-precision fraction, utilizing 

BigIntegers for numerator & denominator
• Factory methods for creating “reduced”

fractions, e.g.
• 44/55 → 4/5
• 12/24 → 1/2
• 144/216 → 2/3

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8
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Applying Basic Completable Future Features
• We show how to apply basic completable

future features in the context of BigFraction
• Arbitrary-precision fraction, utilizing 

BigIntegers for numerator & denominator
• Factory methods for creating “reduced”

fractions
• Factory methods for creating “non-

reduced” fractions (& then reducing them)
• e.g., 12/24 (→ 1/2)

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8
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Applying Basic Completable Future Features
• We show how to apply basic completable

future features in the context of BigFraction
• Arbitrary-precision fraction, utilizing 

BigIntegers for numerator & denominator
• Factory methods for creating “reduced”

fractions
• Factory methods for creating “non-

reduced” fractions (& then reducing them)
• Arbitrary-precision fraction arithmetic

• e.g., 18/4 ×2/3 = 3

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8
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Applying Basic Completable Future Features
• We show how to apply basic completable

future features in the context of BigFraction
• Arbitrary-precision fraction, utilizing 

BigIntegers for numerator & denominator
• Factory methods for creating “reduced”

fractions
• Factory methods for creating “non-

reduced” fractions (& then reducing them)
• Arbitrary-precision fraction arthimetic
• Create a mixed fraction from an improper

fraction
• e.g., 18/4 → 4 1/2

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8
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Applying Basic Completable Future Features

CompletableFuture<BigFraction> future 
= new CompletableFuture<>();

new Thread (() -> {
BigFraction bf1 =
new BigFraction("62675744/15668936");

BigFraction bf2 =
new BigFraction("609136/913704");

future.complete(bf1.multiply(bf2));
}).start();

...
System.out.println(future.join().toMixedString());

• Multiplying big fractions w/a completable future : Main

start()

…

new()

: Completable
Future

: Backround
Thread

complete()

join()

…

new()

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8


12

Applying Basic Completable Future Features

CompletableFuture<BigFraction> future 
= new CompletableFuture<>();

new Thread (() -> {
BigFraction bf1 =
new BigFraction("62675744/15668936");

BigFraction bf2 =
new BigFraction("609136/913704");

future.complete(bf1.multiply(bf2));
}).start();

...
System.out.println(future.join().toMixedString());

Make “empty” future

• Multiplying big fractions w/a completable future

start()

…

new()

: Completable
Future

: Backround
Thread

complete()

join()

…

new()

: Main
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Applying Basic Completable Future Features

CompletableFuture<BigFraction> future 
= new CompletableFuture<>();

new Thread (() -> {
BigFraction bf1 =
new BigFraction("62675744/15668936");

BigFraction bf2 =
new BigFraction("609136/913704");

future.complete(bf1.multiply(bf2));
}).start();

...
System.out.println(future.join().toMixedString());

Start computation in 
a background thread

• Multiplying big fractions w/a completable future

start()

…

new()

: Completable
Future

: Backround
Thread

complete()

join()

…

new()

: Main
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Applying Basic Completable Future Features

CompletableFuture<BigFraction> future 
= new CompletableFuture<>();

new Thread (() -> {
BigFraction bf1 =
new BigFraction("62675744/15668936");

BigFraction bf2 =
new BigFraction("609136/913704");

future.complete(bf1.multiply(bf2));
}).start();

...
System.out.println(future.join().toMixedString());

• Multiplying big fractions w/a completable future

start()

…

new()

: Completable
Future

: Backround
Thread

complete()

join()

…

new()

The computation multiplies BigIntegers

: Main

See docs.oracle.com/javase/8/docs/api/java/math/BigInteger.html

https://docs.oracle.com/javase/8/docs/api/java/math/BigInteger.html
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Applying Basic Completable Future Features

CompletableFuture<BigFraction> future 
= new CompletableFuture<>();

new Thread (() -> {
BigFraction bf1 =
new BigFraction("62675744/15668936");

BigFraction bf2 =
new BigFraction("609136/913704");

future.complete(bf1.multiply(bf2));
}).start();

...
System.out.println(future.join().toMixedString());

• Multiplying big fractions w/a completable future

These computations run concurrently

start()

…

new()

: Completable
Future

: Backround
Thread

complete()

join()

…

new()

: Main
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Applying Basic Completable Future Features

CompletableFuture<BigFraction> future 
= new CompletableFuture<>();

new Thread (() -> {
BigFraction bf1 =
new BigFraction("62675744/15668936");

BigFraction bf2 =
new BigFraction("609136/913704");

future.complete(bf1.multiply(bf2));
}).start();

...
System.out.println(future.join().toMixedString());

• Multiplying big fractions w/a completable future

Explicitly complete the future

start()

…

new()

: Completable
Future

: Backround
Thread

complete()

join()

…

new()

: Main
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Applying Basic Completable Future Features

CompletableFuture<BigFraction> future 
= new CompletableFuture<>();

new Thread (() -> {
BigFraction bf1 =
new BigFraction("62675744/15668936");

BigFraction bf2 =
new BigFraction("609136/913704");

future.complete(bf1.multiply(bf2));
}).start();

...
System.out.println(future.join().toMixedString());

• Multiplying big fractions w/a completable future

join() blocks until result is computed

start()

…

new()

: Completable
Future

: Backround
Thread

complete()

join()

…

new()

: Main
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Limitations with Basic 
Completable Futures Features
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Limitations with Basic Completable Futures Features
• Basic completable future features 

have similar limitations as futures
• Cannot be chained fluently 

to handle async results
• Cannot be triggered reactively
• Cannot be treated efficiently

as a collection of futures
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Limitations with Basic Completable Futures Features

CompletableFuture<BigFraction> future 
= new CompletableFuture<>();

new Thread (() -> {
BigFraction bf1 =
new BigFraction("62675744/15668936");

BigFraction bf2 =
new BigFraction("609136/913704");

future.complete(bf1.multiply(bf2));
}).start();

...
System.out.println(future.join().toMixedString());

• e.g., join() blocks until the future is completed..

This blocking call underutilizes 
cores & increases overhead

http://www.takeourword.com/images/persistence-of-memory.jpg
http://www.takeourword.com/images/persistence-of-memory.jpg
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Limitations with Basic Completable Futures Features

CompletableFuture<BigFraction> future 
= new CompletableFuture<>();

new Thread (() -> {
BigFraction bf1 =
new BigFraction("62675744/15668936");

BigFraction bf2 =
new BigFraction("609136/913704");

future.complete(bf1.multiply(bf2));
}).start();

...
System.out.println(future.join(1, SECONDS).toMixedString());

• e.g., join() blocks until the future is completed..

Using a timeout to bound the blocking duration is still inefficient & error-prone
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Limitations with Basic Completable Futures Features
• We therefore need to leverage the

advanced features of completable
futures

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
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End of Overview of 
Basic Java  8 Completable
Future Features (Part 2)
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