
Overview of Basic Java 8
CompletableFuture Features (Part 2)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

• Understand the basic completable
futures features

• Know how to apply these basic
features to multiply big fractions

Learning Objectives in this Part of the Lesson

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

3

• Understand the basic completable
futures features

• Know how to apply these basic
features to multiply big fractions

• Recognize limitations with
these basic features

Learning Objectives in this Part of the Lesson

4

Applying Basic Completable
Future Features

5

Applying Basic Completable Future Features
• We show how to apply basic completable

future features in the context of BigFraction

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

6

Applying Basic Completable Future Features
• We show how to apply basic completable

future features in the context of BigFraction
• Arbitrary-precision fraction, utilizing

BigIntegers for numerator & denominator

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

7

Applying Basic Completable Future Features
• We show how to apply basic completable

future features in the context of BigFraction
• Arbitrary-precision fraction, utilizing

BigIntegers for numerator & denominator
• Factory methods for creating “reduced”

fractions, e.g.
• 44/55 → 4/5
• 12/24 → 1/2
• 144/216 → 2/3

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

8

Applying Basic Completable Future Features
• We show how to apply basic completable

future features in the context of BigFraction
• Arbitrary-precision fraction, utilizing

BigIntegers for numerator & denominator
• Factory methods for creating “reduced”

fractions
• Factory methods for creating “non-

reduced” fractions (& then reducing them)
• e.g., 12/24 (→ 1/2)

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

9

Applying Basic Completable Future Features
• We show how to apply basic completable

future features in the context of BigFraction
• Arbitrary-precision fraction, utilizing

BigIntegers for numerator & denominator
• Factory methods for creating “reduced”

fractions
• Factory methods for creating “non-

reduced” fractions (& then reducing them)
• Arbitrary-precision fraction arithmetic

• e.g., 18/4 ×2/3 = 3

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

10

Applying Basic Completable Future Features
• We show how to apply basic completable

future features in the context of BigFraction
• Arbitrary-precision fraction, utilizing

BigIntegers for numerator & denominator
• Factory methods for creating “reduced”

fractions
• Factory methods for creating “non-

reduced” fractions (& then reducing them)
• Arbitrary-precision fraction arthimetic
• Create a mixed fraction from an improper

fraction
• e.g., 18/4 → 4 1/2

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

11

Applying Basic Completable Future Features

CompletableFuture<BigFraction> future
= new CompletableFuture<>();

new Thread (() -> {
BigFraction bf1 =
new BigFraction("62675744/15668936");

BigFraction bf2 =
new BigFraction("609136/913704");

future.complete(bf1.multiply(bf2));
}).start();

...
System.out.println(future.join().toMixedString());

• Multiplying big fractions w/a completable future : Main

start()

…

new()

: Completable
Future

: Backround
Thread

complete()

join()

…

new()

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

12

Applying Basic Completable Future Features

CompletableFuture<BigFraction> future
= new CompletableFuture<>();

new Thread (() -> {
BigFraction bf1 =
new BigFraction("62675744/15668936");

BigFraction bf2 =
new BigFraction("609136/913704");

future.complete(bf1.multiply(bf2));
}).start();

...
System.out.println(future.join().toMixedString());

Make “empty” future

• Multiplying big fractions w/a completable future

start()

…

new()

: Completable
Future

: Backround
Thread

complete()

join()

…

new()

: Main

13

Applying Basic Completable Future Features

CompletableFuture<BigFraction> future
= new CompletableFuture<>();

new Thread (() -> {
BigFraction bf1 =
new BigFraction("62675744/15668936");

BigFraction bf2 =
new BigFraction("609136/913704");

future.complete(bf1.multiply(bf2));
}).start();

...
System.out.println(future.join().toMixedString());

Start computation in
a background thread

• Multiplying big fractions w/a completable future

start()

…

new()

: Completable
Future

: Backround
Thread

complete()

join()

…

new()

: Main

14

Applying Basic Completable Future Features

CompletableFuture<BigFraction> future
= new CompletableFuture<>();

new Thread (() -> {
BigFraction bf1 =
new BigFraction("62675744/15668936");

BigFraction bf2 =
new BigFraction("609136/913704");

future.complete(bf1.multiply(bf2));
}).start();

...
System.out.println(future.join().toMixedString());

• Multiplying big fractions w/a completable future

start()

…

new()

: Completable
Future

: Backround
Thread

complete()

join()

…

new()

The computation multiplies BigIntegers

: Main

See docs.oracle.com/javase/8/docs/api/java/math/BigInteger.html

https://docs.oracle.com/javase/8/docs/api/java/math/BigInteger.html

15

Applying Basic Completable Future Features

CompletableFuture<BigFraction> future
= new CompletableFuture<>();

new Thread (() -> {
BigFraction bf1 =
new BigFraction("62675744/15668936");

BigFraction bf2 =
new BigFraction("609136/913704");

future.complete(bf1.multiply(bf2));
}).start();

...
System.out.println(future.join().toMixedString());

• Multiplying big fractions w/a completable future

These computations run concurrently

start()

…

new()

: Completable
Future

: Backround
Thread

complete()

join()

…

new()

: Main

16

Applying Basic Completable Future Features

CompletableFuture<BigFraction> future
= new CompletableFuture<>();

new Thread (() -> {
BigFraction bf1 =
new BigFraction("62675744/15668936");

BigFraction bf2 =
new BigFraction("609136/913704");

future.complete(bf1.multiply(bf2));
}).start();

...
System.out.println(future.join().toMixedString());

• Multiplying big fractions w/a completable future

Explicitly complete the future

start()

…

new()

: Completable
Future

: Backround
Thread

complete()

join()

…

new()

: Main

17

Applying Basic Completable Future Features

CompletableFuture<BigFraction> future
= new CompletableFuture<>();

new Thread (() -> {
BigFraction bf1 =
new BigFraction("62675744/15668936");

BigFraction bf2 =
new BigFraction("609136/913704");

future.complete(bf1.multiply(bf2));
}).start();

...
System.out.println(future.join().toMixedString());

• Multiplying big fractions w/a completable future

join() blocks until result is computed

start()

…

new()

: Completable
Future

: Backround
Thread

complete()

join()

…

new()

: Main

18

Limitations with Basic
Completable Futures Features

19

Limitations with Basic Completable Futures Features
• Basic completable future features

have similar limitations as futures
• Cannot be chained fluently

to handle async results
• Cannot be triggered reactively
• Cannot be treated efficiently

as a collection of futures

20

Limitations with Basic Completable Futures Features

CompletableFuture<BigFraction> future
= new CompletableFuture<>();

new Thread (() -> {
BigFraction bf1 =
new BigFraction("62675744/15668936");

BigFraction bf2 =
new BigFraction("609136/913704");

future.complete(bf1.multiply(bf2));
}).start();

...
System.out.println(future.join().toMixedString());

• e.g., join() blocks until the future is completed..

This blocking call underutilizes
cores & increases overhead

http://www.takeourword.com/images/persistence-of-memory.jpg
http://www.takeourword.com/images/persistence-of-memory.jpg

21

Limitations with Basic Completable Futures Features

CompletableFuture<BigFraction> future
= new CompletableFuture<>();

new Thread (() -> {
BigFraction bf1 =
new BigFraction("62675744/15668936");

BigFraction bf2 =
new BigFraction("609136/913704");

future.complete(bf1.multiply(bf2));
}).start();

...
System.out.println(future.join(1, SECONDS).toMixedString());

• e.g., join() blocks until the future is completed..

Using a timeout to bound the blocking duration is still inefficient & error-prone

22

Limitations with Basic Completable Futures Features
• We therefore need to leverage the

advanced features of completable
futures

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

23

End of Overview of
Basic Java 8 Completable
Future Features (Part 2)

	Slide Number 1
	Learning Objectives in this Part of the Lesson
	Learning Objectives in this Part of the Lesson
	Applying Basic Completable Future Features
	Applying Basic Completable Future Features
	Applying Basic Completable Future Features
	Applying Basic Completable Future Features
	Applying Basic Completable Future Features
	Applying Basic Completable Future Features
	Applying Basic Completable Future Features
	Applying Basic Completable Future Features
	Applying Basic Completable Future Features
	Applying Basic Completable Future Features
	Applying Basic Completable Future Features
	Applying Basic Completable Future Features
	Applying Basic Completable Future Features
	Applying Basic Completable Future Features
	Limitations with Basic Completable Futures Features
	Limitations with Basic Completable Futures Features
	Limitations with Basic Completable Futures Features
	Limitations with Basic Completable Futures Features
	Limitations with Basic Completable Futures Features
	End of Overview of �Basic Java 8 Completable Future Features (Part 2)

