
Overview of Java 8 CompletableFutures
(Part 1)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt
Professor of Computer Science

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Recognize key basic & advanced

features of the Java 8 completable
future framework

3

Overview of
Completable Futures

4

• The Java 8 completable future
framework provides an async
concurrent programming model

Overview of Completable Futures

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

5

• The Java 8 completable future
framework provides an async
concurrent programming model
• Supports dependent actions

that trigger upon completion
of async operations

Overview of Completable Futures
Task1: Get start page

asynchronously

These dependencies
can be modeled via
a data flow diagram

Task 2: Count
images on the page

asynchronously

Task 3: Count images
on all hyperlinked

pages asynchronously

Task 4: Combine results to
create the total asynchronously

6

• The Java 8 completable future
framework provides an async
concurrent programming model
• Supports dependent actions

that trigger upon completion
of async operations

Overview of Completable Futures
/page\ =

supplyAsync
(getStartPage())

/imgNum[]\ =
/page\.thenCompose

(supplyAsync
(crawlHyperLinks

(page))
.thenCompose(id()))

/imgNum\ =
/page\.thenCompose

(supplyAsync
(countImages

(page)))

/imgNum\.thenCombine(/imgNum[]\,
(imgNum, imgNum[]\) ->
sumImages())

Async operations
can be forked,

chained, & joined

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionStage.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionStage.html

7

• The Java 8 completable future
framework provides an async
concurrent programming model
• Supports dependent actions

that trigger upon completion
of async operations

• Async operations can run
concurrently in thread pools

Overview of Completable Futures

See www.nurkiewicz.com/2013/05/java-8-definitive-guide-to.html

/page\ =
supplyAsync
(getStartPage())

/imgNum[]\ =
/page\.thenCompose

(supplyAsync
(crawlHyperLinks

(page))
.thenCompose(id()))

/imgNum\ =
/page\.thenCompose

(supplyAsync
(countImages

(page)))

/imgNum\.thenCombine(/imgNum[]\,
(imgNum, imgNum[]\) ->
sumImages())

http://www.nurkiewicz.com/2013/05/java-8-definitive-guide-to.html

8

• The Java 8 completable future
framework provides an async
concurrent programming model
• Supports dependent actions

that trigger upon completion
of async operations

• Async operations can run
concurrently in thread pools
• Either the common fork-join

pool or a user-designed pool

Overview of Completable Futures
/page\ =

supplyAsync
(getStartPage())

/imgNum[]\ =
/page\.thenCompose

(supplyAsync
(crawlHyperLinks

(page))
.thenCompose(id()))

/imgNum\ =
/page\.thenCompose

(supplyAsync
(countImages

(page)))

/imgNum\.thenCombine(/imgNum[]\,
(imgNum, imgNum[]\) ->
sumImages())

9

• The completable future framework
overcomes Java future limitations

Overview of Completable Futures

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

10

• The completable future framework
overcomes Java future limitations
• Can be completed explicitly

Overview of Completable Futures
CompletableFuture<...> future =
new CompletableFuture<>();

new Thread (() -> {
...
future.complete(...);

}).start();

...
System.out.println(future.join());

After complete() is done
calls to join() will unblock

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

11

• The completable future framework
overcomes Java future limitations
• Can be completed explicitly
• Can be chained together fluently

to handle async results efficiently

Overview of Completable Futures
CompletableFuture
.supplyAsync(reduceFraction)
.thenApply(BigFraction

::toMixedString)
.thenAccept(System.out::println);

See en.wikipedia.org/wiki/Fluent_interface

The action of each “completion
stage” is triggered when the

future from the previous stage
completes asynchronously

https://en.wikipedia.org/wiki/Fluent_interface

12

• The completable future framework
overcomes Java future limitations
• Can be completed explicitly
• Can be chained together fluently

to handle async results efficiently
• Can be triggered reactively/

efficiently as a collection of
futures w/out undue overhead

Overview of Completable Futures
CompletableFuture<List
<BigFraction>> futureToList =
Stream
.generate(generator)
.limit(sMAX_FRACTIONS)
.map(reduceFractions)
.collect(FuturesCollector

.toFutures());
futureToList
.thenAccept(printList);

Print out the results after all async
fraction reductions have completed

13

• The completable future framework
overcomes Java future limitations
• Can be completed explicitly
• Can be chained together fluently

to handle async results efficiently
• Can be triggered reactively/

efficiently as a collection of
futures w/out undue overhead

Overview of Completable Futures
CompletableFuture<List
<BigFraction>> futureToList =
Stream
.generate(generator)
.limit(sMAX_FRACTIONS)
.map(reduceFractions)
.collect(FuturesCollector

.toFutures());
futureToList
.thenAccept(printList);

Completable futures can also be
combined with Java 8 streams

14

• Some completable future features
are basic

Overview of Completable Futures

15

• Some completable future features
are basic
• e.g., the Java Future API + a

few simple enhancements

Overview of Completable Futures

Only slightly better than the conventional Future interface

16

• Other completable future
features are more advanced

Overview of Completable Futures

17

• Other completable future
features are more advanced
• Factory methods

• Initiate async two-way
or one-way functionality

Overview of Completable Futures

18

• Other completable future
features are more advanced
• Factory methods
• Chaining methods

• Serve as completion stage
for async result processing
& composition

Overview of Completable Futures

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionStage.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionStage.html

19

• Other completable future
features are more advanced
• Factory methods
• Chaining methods
• “Arbitrary-arity” methods

that process futures in bulk
• Combine multiple futures

into a single future

Overview of Completable Futures

See en.wikipedia.org/wiki/Arity

https://en.wikipedia.org/wiki/Arity

20

End of Overview of Java 8
Completable Futures

(Part 1)

	Slide Number 1
	Learning Objectives in this Part of the Lesson
	Overview of Completable Futures
	Overview of Completable Futures
	Overview of Completable Futures
	Overview of Completable Futures
	Overview of Completable Futures
	Overview of Completable Futures
	Overview of Completable Futures
	Overview of Completable Futures
	Overview of Completable Futures
	Overview of Completable Futures
	Overview of Completable Futures
	Overview of Completable Futures
	Overview of Completable Futures
	Overview of Completable Futures
	Overview of Completable Futures
	Overview of Completable Futures
	Overview of Completable Futures
	End of Overview of Java 8 Completable Futures �(Part 1)

