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Learning Objectives in this Part of the Lesson
• Recognize key basic & advanced

features of the Java 8 completable
future framework
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Overview of 
Completable Futures
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• The Java 8 completable future 
framework provides an async
concurrent programming model 

Overview of Completable Futures

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
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• The Java 8 completable future 
framework provides an async
concurrent programming model
• Supports dependent actions

that trigger upon completion 
of async operations

Overview of Completable Futures
Task1: Get start page 

asynchronously

These dependencies 
can be modeled via 
a data flow diagram

Task 2: Count 
images on the page 

asynchronously

Task 3: Count images 
on all hyperlinked 

pages asynchronously

Task 4: Combine results to 
create the total asynchronously
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• The Java 8 completable future 
framework provides an async
concurrent programming model
• Supports dependent actions

that trigger upon completion 
of async operations

Overview of Completable Futures
/page\ = 

supplyAsync
(getStartPage())

/imgNum[]\ = 
/page\.thenCompose

(supplyAsync
(crawlHyperLinks

(page))
.thenCompose(id()))

/imgNum\ =
/page\.thenCompose

(supplyAsync
(countImages

(page)))

/imgNum\.thenCombine(/imgNum[]\, 
(imgNum, imgNum[]\) -> 
sumImages())

Async operations 
can be forked, 

chained, & joined

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionStage.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionStage.html
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• The Java 8 completable future 
framework provides an async
concurrent programming model
• Supports dependent actions

that trigger upon completion 
of async operations

• Async operations can run
concurrently in thread pools

Overview of Completable Futures

See www.nurkiewicz.com/2013/05/java-8-definitive-guide-to.html

/page\ = 
supplyAsync
(getStartPage())

/imgNum[]\ = 
/page\.thenCompose

(supplyAsync
(crawlHyperLinks

(page))
.thenCompose(id()))

/imgNum\ =
/page\.thenCompose

(supplyAsync
(countImages

(page)))

/imgNum\.thenCombine(/imgNum[]\, 
(imgNum, imgNum[]\) -> 
sumImages())

http://www.nurkiewicz.com/2013/05/java-8-definitive-guide-to.html
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• The Java 8 completable future 
framework provides an async
concurrent programming model
• Supports dependent actions

that trigger upon completion 
of async operations

• Async operations can run
concurrently in thread pools
• Either the common fork-join

pool or a user-designed pool

Overview of Completable Futures
/page\ = 

supplyAsync
(getStartPage())

/imgNum[]\ = 
/page\.thenCompose

(supplyAsync
(crawlHyperLinks

(page))
.thenCompose(id()))

/imgNum\ =
/page\.thenCompose

(supplyAsync
(countImages

(page)))

/imgNum\.thenCombine(/imgNum[]\, 
(imgNum, imgNum[]\) -> 
sumImages())
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• The completable future framework
overcomes Java future limitations

Overview of Completable Futures

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
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• The completable future framework
overcomes Java future limitations
• Can be completed explicitly

Overview of Completable Futures
CompletableFuture<...> future = 
new CompletableFuture<>();

new Thread (() -> {
...
future.complete(...);

}).start();

...
System.out.println(future.join());

After complete() is done 
calls to join() will unblock

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8
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• The completable future framework
overcomes Java future limitations
• Can be completed explicitly
• Can be chained together fluently

to handle async results efficiently

Overview of Completable Futures
CompletableFuture
.supplyAsync(reduceFraction)
.thenApply(BigFraction

::toMixedString)
.thenAccept(System.out::println);

See en.wikipedia.org/wiki/Fluent_interface

The action of each “completion 
stage” is triggered when the 

future from the previous stage 
completes asynchronously

https://en.wikipedia.org/wiki/Fluent_interface
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• The completable future framework
overcomes Java future limitations
• Can be completed explicitly
• Can be chained together fluently

to handle async results efficiently
• Can be triggered reactively/

efficiently as a collection of 
futures w/out undue overhead

Overview of Completable Futures
CompletableFuture<List
<BigFraction>> futureToList = 
Stream
.generate(generator)          
.limit(sMAX_FRACTIONS)
.map(reduceFractions)
.collect(FuturesCollector

.toFutures());
futureToList
.thenAccept(printList);

Print out the results after all async
fraction reductions have completed
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• The completable future framework
overcomes Java future limitations
• Can be completed explicitly
• Can be chained together fluently

to handle async results efficiently
• Can be triggered reactively/

efficiently as a collection of 
futures w/out undue overhead

Overview of Completable Futures
CompletableFuture<List
<BigFraction>> futureToList = 
Stream
.generate(generator)          
.limit(sMAX_FRACTIONS)
.map(reduceFractions)
.collect(FuturesCollector

.toFutures());
futureToList
.thenAccept(printList);

Completable futures can also be 
combined with Java 8 streams



14

• Some completable future features 
are basic

Overview of Completable Futures
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• Some completable future features 
are basic
• e.g., the Java Future API + a 

few simple enhancements

Overview of Completable Futures

Only slightly better than the conventional Future interface
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• Other completable future 
features are more advanced

Overview of Completable Futures
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• Other completable future 
features are more advanced
• Factory methods

• Initiate async two-way 
or one-way functionality

Overview of Completable Futures
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• Other completable future 
features are more advanced
• Factory methods
• Chaining methods

• Serve as completion stage 
for async result processing
& composition

Overview of Completable Futures

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionStage.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionStage.html
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• Other completable future 
features are more advanced
• Factory methods
• Chaining methods
• “Arbitrary-arity” methods

that process futures in bulk
• Combine multiple futures

into a single future

Overview of Completable Futures

See en.wikipedia.org/wiki/Arity

https://en.wikipedia.org/wiki/Arity
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End of Overview of Java 8 
Completable Futures 

(Part 1)
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