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Learning Objectives in this Part of the Lesson
• Motivate the need for Java futures

Java futures provide the foundation for Java 8 completable futures



3

Motivating the Need 
for Futures



4

• Thus far, behaviors running in aggregate
operations have all been synchronous
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• Synchronous calls have pros & cons
Motivating the Need for Futures
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• Pros of synchronous calls: 
• “Intuitive” since they map cleanly onto 

conventional two-way method patterns
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See www.iro.umontreal.ca/~keller/Layla/remote.pdf

http://www.iro.umontreal.ca/%7Ekeller/Layla/remote.pdf
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• Cons of synchronous calls: 
• May not leverage all the parallelism 

available in multi-core systems 
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See www.ibm.com/developerworks/library/j-jvmc3

http://www.ibm.com/developerworks/library/j-jvmc3/index.html
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• Cons of synchronous calls: 
• May not leverage all the parallelism 

available in multi-core systems 
• Blocking threads incur overhead

• e.g., due to context switching,
synchronization, data movement,
& memory management
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• Cons of synchronous calls: 
• May not leverage all the parallelism 

available in multi-core systems 
• Blocking threads incur overhead
• Selecting right number of threads is hard
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available in multi-core systems 
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• Selecting right number of threads is hard
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Particularly tricky for I/O-bound programs that need more threads to run efficiently
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• Cons of synchronous calls: 
• May not leverage all the parallelism 

available in multi-core systems 
• Synchronous calls may need to (dynamically) 

change the size of the common fork-join pool

Motivating the Need for Futures
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See dzone.com/articles/think-twice-using-java-8

https://dzone.com/articles/think-twice-using-java-8
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• An alternative approach uses asynchronous
(async) calls & Java futures
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https://en.wikipedia.org/wiki/Asynchrony_(computer_programming)
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• An alternative approach uses asynchronous
(async) calls & Java futures
• Async calls return a future & continue 

running the computation in the background
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https://en.wikipedia.org/wiki/Asynchrony_(computer_programming)
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• An alternative approach uses asynchronous
(async) calls & Java futures
• Async calls return a future & continue 

running the computation in the background
• A future is a proxy that represents the 

result of an async computation
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See en.wikipedia.org/wiki/Futures_and_promises

https://en.wikipedia.org/wiki/Futures_and_promises
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• An alternative approach uses asynchronous
(async) calls & Java futures
• Async calls return a future & continue 

running the computation in the background
• A future is a proxy that represents the 

result of an async computation
• e.g., McDonald’s vs Wendy’s
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See www.nurkiewicz.com/2013/02/javautilconcurrentfuture-basics.html

http://www.nurkiewicz.com/2013/02/javautilconcurrentfuture-basics.html
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• An alternative approach uses asynchronous
(async) calls & Java futures
• Async calls return a future & continue 

running the computation in the background
• A future is a proxy that represents the 

result of an async computation
• When the computation completes the future

is triggered & the caller can get the result
• get() returns a result via blocking, polling, 

or time-bounded blocking
• Results can occur in a different order than 

the original calls were made
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End of Motivating the Need 
for Java 8 Completable

Futures (Part 1)
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