Motivating the Need for

Java 8 Completable Futures (Part 1)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

 Motivate the need for Java futures

<<Java Interface>>

€ Future<Vv>

@ cancel(boolean):boolean
@ isCancelled():boolean

@ isDone():boolean

@ get()

@ get(long, TimeUnit)

Interface Future<V>

Type Parameters:

V - The result type returned by this Future's get method

All Known Subinterfaces:

Response<T>, RunnableFuture<V>, RunnableScheduledFuture<Vs>,
ScheduledFuture<V>

All Known Implementing Classes:

CompletableFuture, CountedCompleter, ForkJoinTask, FutureTask,
RecursiveAction, RecursiveTask, SwingWorker

public interface Future<V>

A Future represents the result of an asynchronous computation. Methods
are provided to check if the computation is complete, to wait for its
completion, and to retrieve the result of the computation. The result can
only be retrieved using method get when the computation has completed,
blocking if necessary until it is ready. Cancellation is performed by the
cancel method. Additional methods are provided to determine if the task
completed normally or was cancelled. Once a computation has completed,
the computation cannot be cancelled. If you would like to use a Future for
the sake of cancellability but not provide a usable result, you can declare
types of the form Future<?> and return null as a result of the underlying
task.

Java futures provide the foundation for Java 8 completable futures

Motivating the Need
for Futures

Motivating the Need for Futures

* Thus far, behaviors running in aggregate CALLER CALLEE

operations have all been syrnchronous ! !
P 4 ~1 searchForWord,

return result, U
o o e e

searchForWord, 'U

return result,

searchForWord,

return return3 U
R —— p——
1
1
1
1
1
[

Motivating the Need for Futures

 Thus far, behaviors running in aggregate CALLER CALLEE

operations have all been synchronous ! !
_ _ " searchForWord,
* i.e., a behavior borrows the thread of ’

: oo . .. return result,

its caller until its computation(s) finish Dttt

- - . searchForWord, '
- ,ﬁ"\k\ DU return result,

\ i

. searchForWord,

" . DU, [_GEU_rD_rf’E‘ir_”s__.U

Motivating the Need for Futures

 Thus far, behaviors running in aggregate CALLER CALLEE
operations have all been synchronous ! !
_ _ " searchForWord,
* i.e., a behavior borrows the thread of ’
: o . . return result;
its caller until its computation(s) finish Dttt
searchForWord, '
return result,
e = e -
searchForWord,
return returng U
e e e e -

Motivating the Need for Futures

« Synchronous calls have pros & cons

Motivating the Need for Futures

* Pros of synchronous calls: CALLER CALLEE
* “Intuitive” since they map cleanly onto L searchForword,
conventional two-way method patterns >

. return result;

search ForWord2

1
1
1
1
1
return result, U
= e e -

searchForWord, ’U

return retu Mgy

See www.iro.umontreal.ca/—keller/Layla/remote.pdf

http://www.iro.umontreal.ca/%7Ekeller/Layla/remote.pdf

Motivating the Need for Futures

« Cons of synchronous calls: CALLER CALLEE
. May not I_everagg all the parallelism L searchForword,
available in multi-core systems g

. return result;

search ForWord2

return result, U
= e e -

searchForWord, ’U

return retu Mgy

See www.ibm.com/developerworks/library/j-jvmc3

http://www.ibm.com/developerworks/library/j-jvmc3/index.html

Motivating the Need for Futures

 Cons of synchronous calls: CALLER CALLEE
* May not I_everagg all the parallelism L searchForword,
available in multi-core systems g
: : ____feturnresult,
» Blocking threads incur overhead :
* e.g., due to context switching, EorWord !
. . searcnrorvvor
synchronization, data movement, e
& memory management PR return result,
searchForWords :
return return3 U
e e e e

See www.ibm.com/developerworks/library/j-jvmc3

http://www.ibm.com/developerworks/library/j-jvmc3

Motivating the Need for Futures

« Cons of synchronous calls: CALLER CALLEE
* May not I_everagg all the parallelism L searchForWord,
available in multi-core systems >
. return result,

» Selecting right number of threads is hard
searchForWord,

return result, U
= e e -

searchForWord, ’U

Efficient return return,
Resource
Utilization

Efficient
Performance

11

Motivating the Need for Futures

« Cons of synchronous calls: CALLER CALLEE
* May not I_everagg all the parallelism L searchForword,
available in multi-core systems >

. return result,

« Selecting right number of threads is hard

1
1
1
i
searchForWord,
return result,
= e e -

searchForWord, ’U

Efficient return return,
Resource
Utilization

Efficient
Performance

12

Motivating the Need for Futures

« Cons of synchronous calls: CALLER CALLEE
« May not leverage all the parallelism L searchForword,
available in multi-core systems g

- Jeturn result,

» Selecting right number of threads is hard
searchForWord,

return result, U
= e e -

searchForWord, ’U

Efficient return return,
Resource
Utilization

Efficient
Performance

13

Motivating the Need for Futures

« Cons of synchronous calls: CALLER CALLEE
* May not I_everagg all the parallelism L searchForword,
available in multi-core systems >

. return result,

« Selecting right number of threads is hard
searchForWord,

1
1
1
1
1
return result, U
= e e -

searchForWord, ’U

Efficient return return,
Resource
Utilization

Efficient
Performance

Particularly tricky for 1/0-bound programs that need more threads to run efficiently

Motivating the Need for Futures

e Cons of synchronous calls: CALLER CALLEE

“ searchForWord, »D

_ return result;
» Synchronous calls may need to (dynamically)

change the size of the common fork-join pool

1
1
1
i
searchForWord,
return result,
= e e -

searchForWord, ’U

return retu Mgy

See dzone.com/articles/think-twice-using-java-8

https://dzone.com/articles/think-twice-using-java-8

Motivating the Need for Futures

 An alternative approach uses asynchronous -5 er CALLEE

(async) calls & Java futures 1 searchForword. L
1

future,

}----1

searchForWord,

future,
future resultl

searchForWord,

future,

future result,

future result,

A

4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
LI O N SR N N

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html

https://en.wikipedia.org/wiki/Asynchrony_(computer_programming)

Motivating the Need for Futures

 An alternative approach uses asynchronous -5 er CALLEE

(async) calls & Java futures { searchForword,

* Async calls return a future & continue o ————————— T
. . . 1 H

running the computation in the background !
searchForWord, %

P ——

future,

searchForWord,

future,

4

See en.wikipedia.org/wiki/Asynchrony (computer programming)

https://en.wikipedia.org/wiki/Asynchrony_(computer_programming)

Motivating the Need for Futures

 An alternative approach uses asynchronous -5 er CALLEE
(async) calls & Java futures

|

A searchForWord,

P —————
future, Y
_ searchForWord, ‘i
» A future is a proxy that represents the PR ———— Tt
2

result of an async computation

searchForWord,

future,

12

!
4

See en.wikipedia.org/wiki/Futures and promises

https://en.wikipedia.org/wiki/Futures_and_promises

Motivating the Need for Futures

 An alternative approach uses asynchronous -5 er CALLEE
(async) calls & Java futures

|

A searchForWord,

P —————————
future, Y
_ searchForWord, ‘i
A future is a proxy that represents the PR ———— Tt
2

result of an async computation
e e.g., McDonald’s vs Wendy'’s

1 2 /\ A\ |

searchForWord,

future,

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:

19

Motivating the Need for Futures

 An alternative approach uses asynchronous -, er CALLEE

(async) calls & Java futures | searchForword,

future,

}----1

searchForWord,

future,
future resultl

 When the computation completes the future

is triggered & the caller can get the result searchForWord,

future,

future result,

future result,

A

4
e

20

Motivating the Need for Futures

 An alternative approach uses asynchronous -, er CALLEE
(async) calls & Java futures

|

A searchForWord,

P ——————
future, &
searchForWord,
P ———
future, 7
_ . future result, &
 When the computation completes the future -
is triggered & the caller can get the result «__f‘_efr_c_h_':_o_r_’\io_rff_f_[:
: : : future
» get() returns a result via blocking, polling, o
or time-bounded blocking p future result, E
) future result, -
+‘ T

See www.nurkiewicz.com/2013/02/javautilconcurrentfuture-basics.htmi

http://www.nurkiewicz.com/2013/02/javautilconcurrentfuture-basics.html

Motivating the Need for Futures

 An alternative approach uses asynchronous -, er CALLEE

(async) calls & Java futures | searchForword,

future,

}----1

searchForWord,

future,
future resultl

 When the computation completes the future

is triggered & the caller can get the result searchForWord,

future,

future result,

* Results can occur in a different order than future result,
the original calls were made T

A

4
e

22

End of Motivating the Need
for Java 8 Completable
Futures (Part 1)

23

	Slide Number 1
	Learning Objectives in this Part of the Lesson
	Motivating the Need �for Futures
	Motivating the Need for Futures
	Motivating the Need for Futures
	Motivating the Need for Futures
	Motivating the Need for Futures
	Motivating the Need for Futures
	Motivating the Need for Futures
	Motivating the Need for Futures
	Motivating the Need for Futures
	Motivating the Need for Futures
	Motivating the Need for Futures
	Motivating the Need for Futures
	Motivating the Need for Futures
	Motivating the Need for Futures
	Motivating the Need for Futures
	Motivating the Need for Futures
	Motivating the Need for Futures
	Motivating the Need for Futures
	Motivating the Need for Futures
	Motivating the Need for Futures
	End of Motivating the Need for Java 8 Completable Futures (Part 1)

