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Learning Objectives in this Part of the Lesson

 Motivate the need for Java futures

<<Java Interface>>

€ Future<Vv>

@ cancel(boolean):boolean
@ isCancelled():boolean

@ isDone():boolean

@ get()

@ get(long, TimeUnit)

Interface Future<V>

Type Parameters:

V - The result type returned by this Future's get method

All Known Subinterfaces:

Response<T>, RunnableFuture<V>, RunnableScheduledFuture<Vs>,
ScheduledFuture<V>

All Known Implementing Classes:

CompletableFuture, CountedCompleter, ForkJoinTask, FutureTask,
RecursiveAction, RecursiveTask, SwingWorker

public interface Future<V>

A Future represents the result of an asynchronous computation. Methods
are provided to check if the computation is complete, to wait for its
completion, and to retrieve the result of the computation. The result can
only be retrieved using method get when the computation has completed,
blocking if necessary until it is ready. Cancellation is performed by the
cancel method. Additional methods are provided to determine if the task
completed normally or was cancelled. Once a computation has completed,
the computation cannot be cancelled. If you would like to use a Future for
the sake of cancellability but not provide a usable result, you can declare
types of the form Future<?> and return null as a result of the underlying
task.

Java futures provide the foundation for Java 8 completable futures
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« Synchronous calls have pros & cons
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* Pros of synchronous calls: CALLER CALLEE
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See www.ibm.com/developerworks/library/j-jvmc3



http://www.ibm.com/developerworks/library/j-jvmc3/index.html
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e Cons of synchronous calls: CALLER CALLEE
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See dzone.com/articles/think-twice-using-java-8
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See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html



https://en.wikipedia.org/wiki/Asynchrony_(computer_programming)
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See www.nurkiewicz.com/2013/02/javautilconcurrentfuture-basics.htmi



http://www.nurkiewicz.com/2013/02/javautilconcurrentfuture-basics.html
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