
Motivating the Need for 
Java 8 Completable Futures (Part 1)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt
Professor of Computer Science

Institute for Software 
Integrated Systems

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Motivate the need for Java futures

Java futures provide the foundation for Java 8 completable futures



3

Motivating the Need 
for Futures



4

• Thus far, behaviors running in aggregate
operations have all been synchronous

Motivating the Need for Futures
CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3



5

• Thus far, behaviors running in aggregate
operations have all been synchronous
• i.e., a behavior borrows the thread of 

its caller until its computation(s) finish

Motivating the Need for Futures
CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3



6

• Thus far, behaviors running in aggregate
operations have all been synchronous
• i.e., a behavior borrows the thread of 

its caller until its computation(s) finish

Motivating the Need for Futures
CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3



7

• Synchronous calls have pros & cons
Motivating the Need for Futures



8

• Pros of synchronous calls: 
• “Intuitive” since they map cleanly onto 

conventional two-way method patterns

Motivating the Need for Futures
CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3

See www.iro.umontreal.ca/~keller/Layla/remote.pdf

http://www.iro.umontreal.ca/%7Ekeller/Layla/remote.pdf


9

• Cons of synchronous calls: 
• May not leverage all the parallelism 

available in multi-core systems 

Motivating the Need for Futures
CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3

See www.ibm.com/developerworks/library/j-jvmc3

http://www.ibm.com/developerworks/library/j-jvmc3/index.html


10

• Cons of synchronous calls: 
• May not leverage all the parallelism 

available in multi-core systems 
• Blocking threads incur overhead

• e.g., due to context switching,
synchronization, data movement,
& memory management

Motivating the Need for Futures
CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3

See www.ibm.com/developerworks/library/j-jvmc3

http://www.ibm.com/developerworks/library/j-jvmc3


11

Motivating the Need for Futures
CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3Efficient
Resource
Utilization

Efficient
Performance

• Cons of synchronous calls: 
• May not leverage all the parallelism 

available in multi-core systems 
• Blocking threads incur overhead
• Selecting right number of threads is hard



12

Motivating the Need for Futures
CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3

• Cons of synchronous calls: 
• May not leverage all the parallelism 

available in multi-core systems 
• Blocking threads incur overhead
• Selecting right number of threads is hard

Efficient
Performance

Efficient
Resource
Utilization



13

• Cons of synchronous calls: 
• May not leverage all the parallelism 

available in multi-core systems 
• Blocking threads incur overhead
• Selecting right number of threads is hard

Motivating the Need for Futures
CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3Efficient
Performance

Efficient
Resource
Utilization



14

Motivating the Need for Futures
CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3

• Cons of synchronous calls: 
• May not leverage all the parallelism 

available in multi-core systems 
• Blocking threads incur overhead
• Selecting right number of threads is hard

Efficient
Performance

Efficient
Resource
Utilization

Particularly tricky for I/O-bound programs that need more threads to run efficiently



15

• Cons of synchronous calls: 
• May not leverage all the parallelism 

available in multi-core systems 
• Synchronous calls may need to (dynamically) 

change the size of the common fork-join pool

Motivating the Need for Futures
CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3

See dzone.com/articles/think-twice-using-java-8

https://dzone.com/articles/think-twice-using-java-8


16See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html

• An alternative approach uses asynchronous
(async) calls & Java futures

Motivating the Need for Futures
CALLER CALLEE

searchForWord1

future result1

searchForWord2

future result2

searchForWord3

future result3

future1

future2

future3

https://en.wikipedia.org/wiki/Asynchrony_(computer_programming)


17See en.wikipedia.org/wiki/Asynchrony_(computer_programming)

• An alternative approach uses asynchronous
(async) calls & Java futures
• Async calls return a future & continue 

running the computation in the background

Motivating the Need for Futures
CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

future1

future2

future3

searchForWord1

searchForWord2

searchForWord3

future1

future2

future3

https://en.wikipedia.org/wiki/Asynchrony_(computer_programming)


18

• An alternative approach uses asynchronous
(async) calls & Java futures
• Async calls return a future & continue 

running the computation in the background
• A future is a proxy that represents the 

result of an async computation

Motivating the Need for Futures
CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

future1

future2

future3

searchForWord1

searchForWord2

searchForWord3

future1

future2

future3

See en.wikipedia.org/wiki/Futures_and_promises

https://en.wikipedia.org/wiki/Futures_and_promises


19

• An alternative approach uses asynchronous
(async) calls & Java futures
• Async calls return a future & continue 

running the computation in the background
• A future is a proxy that represents the 

result of an async computation
• e.g., McDonald’s vs Wendy’s

Motivating the Need for Futures
CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

future1

future2

future3

searchForWord1

searchForWord2

searchForWord3

future1

future2

future3



20

• An alternative approach uses asynchronous
(async) calls & Java futures
• Async calls return a future & continue 

running the computation in the background
• A future is a proxy that represents the 

result of an async computation
• When the computation completes the future

is triggered & the caller can get the result

Motivating the Need for Futures
CALLER CALLEE

searchForWord1

future result1

searchForWord2

future result2

searchForWord3

future result3

future1

future2

future3

future result1

future result2

future result3



21

• An alternative approach uses asynchronous
(async) calls & Java futures
• Async calls return a future & continue 

running the computation in the background
• A future is a proxy that represents the 

result of an async computation
• When the computation completes the future

is triggered & the caller can get the result
• get() returns a result via blocking, polling, 

or time-bounded blocking

Motivating the Need for Futures
CALLER CALLEE

searchForWord1

future result1

searchForWord2

future result2

searchForWord3

future result3

future1

future2

future3

future result1

future result2

future result3

See www.nurkiewicz.com/2013/02/javautilconcurrentfuture-basics.html

http://www.nurkiewicz.com/2013/02/javautilconcurrentfuture-basics.html


22

• An alternative approach uses asynchronous
(async) calls & Java futures
• Async calls return a future & continue 

running the computation in the background
• A future is a proxy that represents the 

result of an async computation
• When the computation completes the future

is triggered & the caller can get the result
• get() returns a result via blocking, polling, 

or time-bounded blocking
• Results can occur in a different order than 

the original calls were made

Motivating the Need for Futures
CALLER CALLEE

searchForWord1

future result1

searchForWord2

future result3

searchForWord3

future result2

future1

future2

future3

future result1

future result3

future result2



23

End of Motivating the Need 
for Java 8 Completable

Futures (Part 1)


	Slide Number 1
	Learning Objectives in this Part of the Lesson
	Motivating the Need �for Futures
	Motivating the Need for Futures
	Motivating the Need for Futures
	Motivating the Need for Futures
	Motivating the Need for Futures
	Motivating the Need for Futures
	Motivating the Need for Futures
	Motivating the Need for Futures
	Motivating the Need for Futures
	Motivating the Need for Futures
	Motivating the Need for Futures
	Motivating the Need for Futures
	Motivating the Need for Futures
	Motivating the Need for Futures
	Motivating the Need for Futures
	Motivating the Need for Futures
	Motivating the Need for Futures
	Motivating the Need for Futures
	Motivating the Need for Futures
	Motivating the Need for Futures
	End of Motivating the Need for Java 8 Completable Futures (Part 1)

