
Overview of Java 8 Parallel Streams
(Part 2)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software 
Integrated Systems

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

• Know how aggregate operations & functional programming features are 
applied in the parallel streams framework

• Understand how a parallel stream works
• Be able to avoid concurrency

hazards in parallel streams

Learning Objectives in this Part of the Lesson

Aggregate operation (Function f)

Input x

Output f(x)

Output g(f(x))

Output h(g(f(x)))

Aggregate operation (Function g)

Aggregate operation (Function h)



5

Avoiding Concurrency 
Hazards in Java 8 
Parallel Streams



6

• The Java 8 parallel streams framework assumes behaviors don’t incur race 
conditions

See en.wikipedia.org/wiki/Race_condition#Software

Avoiding Concurrency Hazards in Java 8 Parallel Streams

Race conditions arise when an app 
depends on the sequence or timing 
of threads for it to operate properly

Aggregate operation (Function f)

Input x

Output f(x)

Output g(f(x))

Output h(g(f(x)))

Aggregate operation (Function g)

Aggregate operation (Function h)

https://en.wikipedia.org/wiki/Race_condition#Software


7

• Parallel streams should therefore 
avoid operations with side-effects 

See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html#side_effects

Avoiding Concurrency Hazards in Java 8 Parallel Streams

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

collect(toList())

Input Strings to Search

…

45,000+ phrases

Search Phrases

https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html#side_effects


8

• Parallel streams should therefore 
avoid operations with side-effects, e.g. 
• Stateful lambda expressions

• Where results depends on shared
mutable state 

Avoiding Concurrency Hazards in Java 8 Parallel Streams
class BuggyFactorial {

static class Total {
long mTotal = 1;
void multiply(long n) 
{ mTotal *= n; }

}  

static long factorial(long n){
Total t = new Total();
LongStream
.rangeClosed(1, n)
.parallel()
.forEach(t::multiply);

return t.mTotal;
} ...

See docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html#Statelessness

https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html#Statelessness


9

• Parallel streams should therefore 
avoid operations with side-effects, e.g. 
• Stateful lambda expressions

• Where results depends on shared
mutable state 
• i.e., state that may change in

parallel execution of a pipeline

Avoiding Concurrency Hazards in Java 8 Parallel Streams
class BuggyFactorial {

static class Total {
long mTotal = 1;
void multiply(long n) 
{ mTotal *= n; }

}  

static long factorial(long n){
Total t = new Total();
LongStream
.rangeClosed(1, n)
.parallel()
.forEach(t::multiply);

return t.mTotal;
} ...



10

• Parallel streams should therefore 
avoid operations with side-effects, e.g. 
• Stateful lambda expressions

• Where results depends on shared
mutable state 
• i.e., state that may change in

parallel execution of a pipeline

Avoiding Concurrency Hazards in Java 8 Parallel Streams

Race conditions can arise due to the 
unsynchronized access to mTotal field

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

class BuggyFactorial {
static class Total {
long mTotal = 1;
void multiply(long n) 
{ mTotal *= n; }

}  

static long factorial(long n){
Total t = new Total();
LongStream
.rangeClosed(1, n)
.parallel()
.forEach(t::multiply);

return t.mTotal;
} ...

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16


11

• Parallel streams should therefore 
avoid operations with side-effects, e.g. 
• Stateful lambda expressions
• Interference w/the data source

• Occurs when source of stream 
is modified within the pipeline

See docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html#NonInterference

Avoiding Concurrency Hazards in Java 8 Parallel Streams
List<Integer> list = IntStream
.range(0, 10)
.boxed()
.collect(toList());

list
.parallelStream()
.peek(list::remove)
.forEach(System.out::println);

https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html#NonInterference


12

• Parallel streams should therefore 
avoid operations with side-effects, e.g. 
• Stateful lambda expressions
• Interference w/the data source

• Occurs when source of stream 
is modified within the pipeline

Avoiding Concurrency Hazards in Java 8 Parallel Streams
List<Integer> list = IntStream
.range(0, 10)
.boxed()
.collect(toList());

list
.parallelStream()
.peek(list::remove)
.forEach(System.out::println);

Aggregate operations enable parallelism with non-thread-safe collections 
provided the collection is not modified while it’s being operated on..

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex11

http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex11


13

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

collect(toList())

45,000+ phrases

Search Phrases

• Java 8 lambda expressions & method references containing no shared state 
are useful for parallel streams since they needn’t be explicitly synchronized

See henrikeichenhardt.blogspot.com/2013/06/why-shared-mutable-state-is-root-of-all.html

return mList.size() == 0;

return new SearchResults
(Thread.currentThread().getId(),
currentCycle(), phrase, title,
StreamSupport

.stream(new PhraseMatchSpliterator
(input, phrase),

parallel)
.collect(toList()));

Avoiding Concurrency Hazards in Java 8 Parallel Streams

http://henrikeichenhardt.blogspot.com/2013/06/why-shared-mutable-state-is-root-of-all.html

	Slide Number 1
	Learning Objectives in this Part of the Lesson
	Avoiding Concurrency Hazards in Java 8 �Parallel Streams
	Avoiding Concurrency Hazards in Java 8 Parallel Streams
	Avoiding Concurrency Hazards in Java 8 Parallel Streams
	Avoiding Concurrency Hazards in Java 8 Parallel Streams
	Avoiding Concurrency Hazards in Java 8 Parallel Streams
	Avoiding Concurrency Hazards in Java 8 Parallel Streams
	Avoiding Concurrency Hazards in Java 8 Parallel Streams
	Avoiding Concurrency Hazards in Java 8 Parallel Streams
	Avoiding Concurrency Hazards in Java 8 Parallel Streams

