
Overview of Java 8 Parallel Streams
(Part 1)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software 
Integrated Systems

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Aggregate operation (Function f)

Input x

Output f(x)

Output g(f(x))

Output h(g(f(x)))

Aggregate operation (Function g)

Aggregate operation (Function h)

Learning Objectives in this Part of the Lesson
• Know how aggregate operations & functional programming features are 

applied in the parallel streams framework



3

Learning Objectives in this Part of the Lesson
• Know how aggregate operations & functional programming features are 

applied in the parallel streams framework
• Understand how a parallel stream works

join joinjoin

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

trySplit()

trySplit() trySplit()



4

Overview of Java 8 
Parallel Streams



5See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

Overview of Java 8 Parallel Streams
• A Java 8 parallel stream splits its elements 

into multiple chunks & uses a thread pool 
to process these chunks independently

Output f(x)

Output g(f(x))

Output h(g(f(x)))

…

Input x

Aggregate operation (behavior f)

Aggregate operation (behavior g)

Aggregate operation (behavior h)

https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html


6

Overview of Java 8 Parallel Streams

Output f(x)

Output g(f(x))

Output h(g(f(x)))

…

Input x

Aggregate operation (behavior f)

Aggregate operation (behavior g)

Aggregate operation (behavior h)

• A Java 8 parallel stream splits its elements 
into multiple chunks & uses a thread pool 
to process these chunks independently
• This splitting & thread pool are often 

invisible to programmers



7

• A Java 8 parallel stream splits its elements 
into multiple chunks & uses a thread pool 
to process these chunks independently
• This splitting & thread pool are often 

invisible to programmers
• The order in which chunks are processed 

is likely non-deterministic

Aggregate operation (behavior f)

Output f(x)

Output g(f(x))

Aggregate operation (behavior g)

Aggregate operation (behavior h)

Output h(g(f(x)))

i.e., programmers often have little/no control over how chunks are processed

…

Input x

Overview of Java 8 Parallel Streams



8

• A Java 8 parallel stream splits its elements 
into multiple chunks & uses a thread pool 
to process these chunks independently
• This splitting & thread pool are often 

invisible to programmers
• The order in which chunks are processed 

is likely non-deterministic
• This non-determinism 

is usually a good thing!

Aggregate operation (behavior f)

Output f(x)

Output g(f(x))

Aggregate operation (behavior g)

Aggregate operation (behavior h)

Output h(g(f(x)))

…

Input x

Overview of Java 8 Parallel Streams



9Programmers have more control over how the results are presented

• A Java 8 parallel stream splits its elements 
into multiple chunks & uses a thread pool 
to process these chunks independently
• This splitting & thread pool are often 

invisible to programmers
• The order in which chunks are processed 

is likely non-deterministic
• The results of the processing are likely

deterministic

Aggregate operation (behavior f)

Output f(x)

Output g(f(x))

Aggregate operation (behavior g)

Aggregate operation (behavior h)

Output h(g(f(x)))

…

Input x

Overview of Java 8 Parallel Streams



10

Overview of Java 8 Parallel Streams
• When a stream executes sequentially all of its aggregate operations run in a 

single thread

…

Stream
<SearchResults>

Stream
<String>

Stream
<SearchResults>

List
<SearchResults>

…

List
<String> …

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

collect(toList())

Search Phrases

stream()



11

Overview of Java 8 Parallel Streams
• When a stream executes in parallel, it is partitioned into multiple substream

“chunks” that run in a common fork-join pool

…

Stream
<SearchResults>

Stream
<String>

Stream
<SearchResults>

List
<SearchResults>

…

List
<String> …

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

collect(toList())

Search Phrases

parallelStream()

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html


12

Overview of Java 8 Parallel Streams
• When a stream executes in parallel, it is partitioned into multiple substream

“chunks” that run in a common fork-join pool

…

Stream
<SearchResults>

Stream
<String>

Stream
<SearchResults>

List
<SearchResults>

…

List
<String> …

Threads in the pool process different chunks in a non-deterministic order

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

collect(toList())

Search Phrases

parallelStream()



13Intermediate operations iterate over & process these chunks in parallel

Overview of Java 8 Parallel Streams

…

Stream
<SearchResults>

Stream
<String>

Stream
<SearchResults>

List
<SearchResults>

…

List
<String> …

• When a stream executes in parallel, it is partitioned into multiple substream
“chunks” that run in a common fork-join pool

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

collect(toList())

Search Phrases

parallelStream()



14

Overview of Java 8 Parallel Streams

…

Stream
<SearchResults>

Stream
<String>

Stream
<SearchResults>

List
<SearchResults>

…

List
<String> …

• When a stream executes in parallel, it is partitioned into multiple substream
“chunks” that run in a common fork-join pool

A terminal operation then combines the chunks into a single result

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

collect(toList())

Search Phrases

parallelStream()



15(Stateless) Java 8 lambda expressions & method references are used to pass behaviors

Overview of Java 8 Parallel Streams

…

Stream
<SearchResults>

Stream
<String>

Stream
<SearchResults>

List
<SearchResults>

…

List
<String> …

• When a stream executes in parallel, it is partitioned into multiple substream
“chunks” that run in a common fork-join pool

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

collect(toList())

Search Phrases

parallelStream()



16

Overview of Java 8 Parallel Streams

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

• The same aggregate operations can be used for sequential & parallel streams

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html


17

Overview of Java 8 Parallel Streams
• The same aggregate operations can be used for sequential & parallel streams

See github.com/douglascraigschmidt/LiveLessons/tree/master/SearchStreamGang

e.g., SearchStreamGang uses the same aggregate 
operations for both SearchWithSequentialStreams
& SearchWithParallelStreams implementations

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

collect(toList())

Search Phrases

stream() vs. parallelStream()

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SearchStreamGang


18

Overview of Java 8 Parallel Streams
• The same aggregate operations can be used for sequential & parallel streams

• Java 8 streams can thus treat parallelism as an 
optimization & leverage all available cores!

See qconlondon.com/london-2017/system/files/presentation-slides/concurrenttoparallel.pdf

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

collect(toList())

Search Phrases

parallelStream()

https://qconlondon.com/london-2017/system/files/presentation-slides/concurrenttoparallel.pdf


19

Overview of Java 8 Parallel Streams
• The same aggregate operations can be used for sequential & parallel streams

• Java 8 streams can thus treat parallelism as an 
optimization & leverage all available cores!

• Naturally, behaviors run by these aggregate 
operations must be designed carefully to 
avoid accessing unsynchronized shared state.. 

See henrikeichenhardt.blogspot.com/2013/06/why-shared-mutable-state-is-root-of-all.html

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

collect(toList())

Search Phrases

parallelStream()

http://henrikeichenhardt.blogspot.com/2013/06/why-shared-mutable-state-is-root-of-all.html


20

Overview of How a 
Parallel Stream Works



21

• A Java 8 parallel stream implements
a “map/reduce” variant optimized 
for multi-core processors 

See en.wikipedia.org/wiki/MapReduce

Overview of How a Parallel Stream Works

Reduce

Map

Partition

http://en.wikipedia.org/wiki/MapReduce


22

• A Java 8 parallel stream implements
a “map/reduce” variant optimized 
for multi-core processors 
• It’s actually more like the

“split-apply-combine” 
data analysis strategy 

See www.jstatsoft.org/article/view/v040i01

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

trySplit()

trySplit() trySplit()

Overview of How a Parallel Stream Works

http://www.jstatsoft.org/article/view/v040i01


23

• Split-apply-combine works as follows:
1. Split – Recursively partition a 

data source into independent
“chunks”

CollectionData1.1 CollectionData1.2 CollectionData2.1 CollectionData2.2

CollectionData1 CollectionData2

CollectionData

See en.wikipedia.org/wiki/Divide_and_conquer_algorithm

trySplit()

trySplit() trySplit()

Overview of How a Parallel Stream Works

https://en.wikipedia.org/wiki/Divide_and_conquer_algorithm


24

• Split-apply-combine works as follows:
1. Split – Recursively partition a 

data source into independent
“chunks”

• Spliterators are defined
to partition collections 
in Java 8

CollectionData1.1 CollectionData1.2 CollectionData2.1 CollectionData2.2

CollectionData1 CollectionData2

CollectionData

See docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html

trySplit()

trySplit() trySplit()

Overview of How a Parallel Stream Works

https://docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html


25

• Split-apply-combine works as follows:
1. Split – Recursively partition a 

data source into independent
“chunks”

• Spliterators are defined
to partition collections 
in Java 8

• You can also define custom 
spliterators

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

InputString

See github.com/douglascraigschmidt/LiveLessons/tree/master/SearchStreamSpliterator

45,000+ phrases

Search Phrases

Input Strings to Search

…

trySplit()

trySplit() trySplit()

Overview of How a Parallel Stream Works

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SearchStreamSpliterator


26

• Split-apply-combine works as follows:
1. Split – Recursively partition a 

data source into independent
“chunks”

• Spliterators are defined
to partition collections 
in Java 8

• You can also define custom 
spliterators

• Parallel streams perform better 
on data sources that can be 
split efficiently & evenly

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

InputString

See www.airpair.com/java/posts/parallel-processing-of-io-based-data-with-java-streams

trySplit()

trySplit() trySplit()

Overview of How a Parallel Stream Works

http://www.airpair.com/java/posts/parallel-processing-of-io-based-data-with-java-streams


27

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

• Split-apply-combine works as follows:
1. Split – Recursively partition a 

data source into independent
“chunks”

2. Apply – Process chunks
independently in a pool
of threads

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

InputString

Splitting & applying run simultaneously (after certain limit met), not sequentially

Overview of How a Parallel Stream Works



28

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

• Split-apply-combine works as follows:
1. Split – Recursively partition a 

data source into independent
“chunks”

2. Apply – Process chunks
independently in a pool
of threads

• Programmers have some
control over how many
threads are in the pool

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

InputString

Overview of How a Parallel Stream Works



29

• Split-apply-combine works as follows:
1. Split – Recursively partition a 

data source into independent
“chunks”

2. Apply – Process chunks
independently in a pool
of threads

3. Combine – Join partial 
results into a single result

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

InputString

Overview of How a Parallel Stream Works



30

• Split-apply-combine works as follows:
1. Split – Recursively partition a 

data source into independent
“chunks”

2. Apply – Process chunks
independently in a pool
of threads

3. Combine – Join partial 
results into a single result

• Performed by terminal 
operations like collect() 
& reduce()

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

See www.codejava.net/java-core/collections/java-8-stream-terminal-operations-examples

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

InputString

Overview of How a Parallel Stream Works

http://www.codejava.net/java-core/collections/java-8-stream-terminal-operations-examples


31

End of Overview of 
Java 8 Parallel Streams

(Part 1)


	Slide Number 1
	Learning Objectives in this Part of the Lesson
	Learning Objectives in this Part of the Lesson
	Overview of Java 8 Parallel Streams
	Overview of Java 8 Parallel Streams
	Overview of Java 8 Parallel Streams
	Overview of Java 8 Parallel Streams
	Overview of Java 8 Parallel Streams
	Overview of Java 8 Parallel Streams
	Overview of Java 8 Parallel Streams
	Overview of Java 8 Parallel Streams
	Overview of Java 8 Parallel Streams
	Overview of Java 8 Parallel Streams
	Overview of Java 8 Parallel Streams
	Overview of Java 8 Parallel Streams
	Overview of Java 8 Parallel Streams
	Overview of Java 8 Parallel Streams
	Overview of Java 8 Parallel Streams
	Overview of Java 8 Parallel Streams
	Overview of How a Parallel Stream Works
	Overview of How a Parallel Stream Works
	Overview of How a Parallel Stream Works
	Overview of How a Parallel Stream Works
	Overview of How a Parallel Stream Works
	Overview of How a Parallel Stream Works
	Overview of How a Parallel Stream Works
	Overview of How a Parallel Stream Works
	Overview of How a Parallel Stream Works
	Overview of How a Parallel Stream Works
	Overview of How a Parallel Stream Works
	End of Overview of �Java 8 Parallel Streams�(Part 1)

