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Learning Objectives in this Part of the Lesson

« Know how aggregate operations & functional programming features are
applied in the parallel streams framework éé @ Input x éé
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Learning Objectives in this Part of the Lesson

» Understand how a parallel stream works
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Overview of Java 8 Parallel Streams
« A Java 8 parallel stream splits its elements

into multiple chunks & uses a thread pool = -
P Y 155 4 ;::Input x %
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to process these chunks independently
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See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html
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Overview of Java 8 Paral

el Streams

e A Java 8 parallel stream splits its elements
Into multiple chunks & uses a thread pool
to process these chunks independently

» This splitting & thread pool are often
Invisible to programmers
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Overview of Java 8 Parallel Streams
e A Java 8 parallel stream splits its elements J

Into multiple chunks & uses a thread pool < X eé
to process these chunks independently ,95 {},Ilnput X
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Aggregate operation (behavior f)
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Aggregate operation (behavior g)

@ output g(f(x))
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Aggregate operation (behavior h)
[

G ::Output h(g(f(x)));

l.e., programmers often have little/no control over how chunks are processed

e The orderin which chunks are processed
IS likely non-deterministic




Overview of Java 8 Parallel Streams
e A Java 8 parallel stream splits its elements

Into multiple chunks & uses a thread pool : X eé
to process these chunks independently ,95 {},Imput X
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Aggregate operation (behavior f)

! | iiOutput f(x)
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Aggregate operation (behavior g)

@ output g(f(x))
J

Aggregate operation (behavior h)
[

@ ::Output h(g(f(x)));

e The orderin which chunks are processed
IS likely non-deterministic

* This non-determinism
IS usually a good thing!
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Overview of Java 8 Parallel Streams
e A Java 8 parallel stream splits its elements J

Into multiple chunks & uses a thread pool < X eé
to process these chunks independently ,95 {},Ilnput X

-

Aggregate operation (behavior f)

! | iiOutput f(x)
L

Aggregate operation (behavior g)

@ output g(f(x))
J

Aggregate operation (behavior h)
[

@ ::Output h(g(f(x)));

Programmers have more control over how the results are presented
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Overview of Java 8 Parallel Streams

 When a stream executes sequentially all of its aggregate operatlons run in a

single thread
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Overview of Java 8 Parallel Streams

 When a stream executes in parallel, it is partitioned into multlple substream
“chunks” that run in a common fork-join pool
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See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html
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Overview of Java 8 Parallel Streams

 When a stream executes in parallel, it is partitioned into multlple substream
“chunks” that run in a common fork-join pool
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Threads in the pool process different chunks in a non-deterministic order




Overview of Java 8 Parallel Streams

 When a stream executes in parallel, it is partitioned into multlple substream
“chunks” that run in a common fork-join pool
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Intermediate operations iterate over & process these chunks in paralle/




Overview of Java 8 Parallel Streams

 When a stream executes in parallel, it is partitioned into multlple substream
“chunks” that run in a common fork-join pool
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A terminal operation then combines the chunks into a single result




Overview of Java 8 Parallel Streams

 When a stream executes in parallel, it is partitioned into multlple substream
“chunks” that run in a common fork-join pool

List eé _________________________ ! Search Phrases
<String> e 4 }

parallelStream()

Stream
<String>

s b

map(phrase -> searchForPhrase(...))

filtter(not(SearchResults::isEmpty))
Stream —

Sy,

<SearchResults>

collect(toList())

! I
! I
! I
. I
! 1
! I
! I
| I
l I

Stream : h 4 ) 4 y v :

<SearchResults> : ( ) ( ) ( ) ( ) ( ) ( ) : {}
1 I
: v !
- O
| I
| I
| I
I i
I

List
<SearchResults> ! ‘O O O‘-; \ /

(Stateless) Java 8 lambda expressions & method references are used to pass behaviors




Overview of Java 8 Parallel Streams

 The same aggregate operations can be used for sequential & parallel streams

Medifier and Type

boolean

boolean

static <T> Stream.Builder<T>

<R,A> R

<R= R

static <T> Stream<T>

long

Stream<T>

static <T> Stream<T>

Stream<T>

Optional<T>

Optional<T>

<R> Stream<R>

Method and Description

allMatch(Predicate<? super T> predicate)

Returns whether all elements of this stream match the provided predicate,
anyMatch(Predicate<? super T> predicate)

Returns whether any elements of this stream match the provided predicate.

builder()

Returns a builder for a Stream.

collect(Collector=? super T,A,R> collector)

Performs a mutable reduction operation on the elements of this stream using a Collector.
collect(Supplier<R> supplier, BiConsumer<R,? super T> accumulator, BiConsumer<R,R> combiner)
Performs a mutable reduction operation on the elements of this stream.

concat(Stream<? extends T> a, Stream<? extends T> b)

Creates a lazily concatenated stream whose elements are all the elements of the first stream followed by all the elements of the second stream.
count(}

Returns the count of elements in this stream.

distinct()

Returns a stream consisting of the distinct elements (according to Object.equals({0Object)) of this stream.
enpty()

Returns an empty sequential Stream.

filter(Predicate<? super T> predicate)

Returns a stream consisting of the elements of this stream that match the given predicate.

findAny ()

Returns an Optional describing some element of the stream, or an empty Optional if the stream is empty.
findFirst()

Returns an Optional describing the first element of this stream. or an empty Optional if the stream is empty.
flatMap(Function<? super T,7 extends Stream<? extends R>> mapper)

Returns a stream consisting of the results of replacing each element of this stream with the contents of a mapped stream produced by applying the provided mapping
function to each element.

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
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Overview of Java 8 Parallel Streams
 The same aggregate operations can be used for sequential & parallel streams

e.q., SearchStreamGang uses the same aggregate Hamiletes: &
operations for both SearchWithSequentialStreams I I Search Phrases

& SearchWithParalle/Streams implementations

\ stream() vs. parallelStream()
map(phrase -> searchForPhrase(...))
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collect(toList())

See qgithub.com/douglascraigschmidt/LiveLessons/tree/master/SearchStreamGang
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Overview of Java 8 Parallel Streams
 The same aggregate operations can be used for sequential & parallel streams

« Java 8 streams can thus treat parallelism as an
optimization & leverage all available cores! e
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collect(toList())

See gconlondon.com/london-2017/system/files/presentation-slides/concurrenttoparallel.pdf
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Overview of Java 8 Parallel Streams
 The same aggregate operations can be used for sequential & parallel streams

 Naturally, behaviors run by these aggregate 1 Search Phrases

operations must be designed carefully to varallelStream()

avoid accessing unsynchronized shared state.. U

map(phrase -> searchForPhrase(...))

~~

filter(not(SearchResults: iSEmpty))
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~~

collect(toList())

See henrikeichenhardt.blogspot.com/2013/06/why-shared-mutable-state-is-root-of-all.html
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Overview of How a
Parallel Stream Works
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Overview of How a Parallel Stream Works

« A Java 8 parallel stream implements
a “map/reduce” variant optimized
for multi-core processors
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See en.wikipedia.org/wiki/MapReduce
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Overview of How a Parallel Stream Works

« A Java 8 parallel stream implements
a “map/reduce” variant optimized

for multi-core processors

 It’s actually more like the
“split-apply-combine”
data analysis strategy
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See www.|statsoft.org/article/view/v040i01
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Overview of How a Parallel Stream Works

« Split-apply-combine works as follows: CollectionData
1. Split — Recursively partition a

trySplit()
data source into independent [ colectionbata, CollectionData,
“chunks”
trySplit() trySplit()
CollectionData, ; CollectionData, , CollectionData, ; CollectionData, ,

See en.wikipedia.org/wiki/Divide and conquer algorithm
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Overview of How a Parallel Stream Works

« Split-apply-combine works as follows: CollectionData
1. Split — Recur_swel_y partition a trySplit()
data source into Ind6pendent CollectionData, CollectionData,
“chunks”
trySplit() trySplit()

« Spliterators are defined

CollectionData, , CollectionData, , CollectionData, , CollectionData, ,

to partition collections
In Java 8

public interface Spliterator<T> {
boolean tryAdvance(Consumer<? super T»> action) ;
Spliterator<T> trySplit() ;
long estimateSize();

int characteristics();

}

See docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html
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Overview of How a Parallel Stream Works

« Split-apply-combine works as follows: InputString
1. Split — Recursively partition a trySplit()
data source into independent InputString, Inputstring,
“chunks”
trySplit() trySplit()
InputString, , InputString, , InputString, ; InputString, ,

Input Strings to Search

* You can also define custom

spliterators . . . .

Search Phrases

See qgithub.com/douglascraigschmidt/LiveLessons/tree/master/SearchStreamSpliterator
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Overview of How a Parallel Stream Works

« Split-apply-combine works as follows: InputString
1. Split — Recursively partition a trySplit()
data source into independent InputString, Inputstring,
“chunks”
trySplit() trySplit()
InputString, , InputString, , InputString, ; InputString, ,

» Parallel streams perform better
on data sources that can be
split efficiently & evenly

See www.airpair.com/java/posts/parallel-processing-of-io-based-data-with-java-streams
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Overview of How a Parallel Stream Works
« Split-apply-combine works as follows: ' |

2. Apply — Process chunks | | |

independently in a pool | | | |
of threads Proces_s Proces_s Proces_s Proces_s
sequentially sequentially sequentially sequentially

‘ S
4 Poo| of worker th\’e‘a@ .

Splitting & applying run simultaneously (after certain limit met), not sequentially




Overview of How a Parallel Stream Works

« Split-apply-combine works as follows:

2. Apply — Process chunks
independently in a pool

of threads

* Programmers have some
control over how many
threads are in the pool

Controller

| Plant
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Process Process Process Process
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A booj of worker thread®
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Overview of How a Parallel Stream Works

« Split-apply-combine works as follows:

3. Combine — Join partial
results into a single result

/’/
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Overview of How a Parallel Stream Works
« Split-apply-combine works as follows:

3. Combine — Join partial
results into a single result

» Performed by terminal
operations like collect()
& reduce()

See www.codejava.net/java-core/collections/java-8-stream-terminal-operations-examples
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End of Overview of
Java 8 Parallel Streams
(Part 1)
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