Overview of Java 8 Parallel Streams

(Part 1)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
‘ ;7 Integrated Systems
Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Know how aggregate operations & functional programming features are
applied in the parallel streams framework éé @ Input x éé

Aggregate operation (Function f)

! | iiOutputf(x)

Aggregate operation (Function g) i

@:: Output g(f(x))

Aggregate operation (Function h)

- e e e e e e e e e) b e o e o e e e o e o e W)

@ Output h(g(f(x)))

Learning Objectives in this Part of the Lesson

» Understand how a parallel stream works

DataSource

DataSource,

trySplit()

trySplit()

DataSource, ;

DataSource; ,

DataSource,

trySplit()

Process
sequentially

Process

sequentially

DataSource, ;

Process
sequentially

DataSource, ,

Process
sequentially

Overview of Java 8
Parallel Streams

Overview of Java 8 Parallel Streams
« A Java 8 parallel stream splits its elements

into multiple chunks & uses a thread pool = -
P Y 155 4 ;::Input x %

-

to process these chunks independently

Aggregate operation (behavior f)

! | iiOutput f(x)
L

Aggregate operation (behavior g)

@ output g(f(x))
I

Aggregate operation (behavior h)
[

G ::Output h(g(f(x)));

See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

Overview of Java 8 Paral

el Streams

e A Java 8 parallel stream splits its elements
Into multiple chunks & uses a thread pool
to process these chunks independently

» This splitting & thread pool are often
Invisible to programmers

-

=< {} ;ilnput x 5

Aggregate operation (behavior f)

! | iiOutput f(x)
T

Aggregate operation (behavior g)

@ output g(f(x))
J

Aggregate operation (behavior h)

@ ::Output h(g(f(x)));

Overview of Java 8 Parallel Streams
e A Java 8 parallel stream splits its elements J

Into multiple chunks & uses a thread pool < X eé
to process these chunks independently ,95 {},Ilnput X

-

Aggregate operation (behavior f)

! | iiOutput f(x)
L

Aggregate operation (behavior g)

@ output g(f(x))
J

Aggregate operation (behavior h)
[

G ::Output h(g(f(x)));

l.e., programmers often have little/no control over how chunks are processed

e The orderin which chunks are processed
IS likely non-deterministic

Overview of Java 8 Parallel Streams
e A Java 8 parallel stream splits its elements

Into multiple chunks & uses a thread pool : X eé
to process these chunks independently ,95 {},Imput X

-

Aggregate operation (behavior f)

! | iiOutput f(x)
T

Aggregate operation (behavior g)

@ output g(f(x))
J

Aggregate operation (behavior h)
[

@ ::Output h(g(f(x)));

e The orderin which chunks are processed
IS likely non-deterministic

* This non-determinism
IS usually a good thing!

\
o
4

Overview of Java 8 Parallel Streams
e A Java 8 parallel stream splits its elements J

Into multiple chunks & uses a thread pool < X eé
to process these chunks independently ,95 {},Ilnput X

-

Aggregate operation (behavior f)

! | iiOutput f(x)
L

Aggregate operation (behavior g)

@ output g(f(x))
J

Aggregate operation (behavior h)
[

@ ::Output h(g(f(x)));

Programmers have more control over how the results are presented

deterministic

I
|
I
|
I
|
I
« The results of the processing are likely :
|
I
|
I
|
I
|

Overview of Java 8 Parallel Streams

 When a stream executes sequentially all of its aggregate operatlons run in a

single thread

List Z
9
<String> é

Stream
<String>

Stream
<SearchResults>

Stream
<SearchResults>

List
<SearchResults>

! ! Search Phrases

stream()

~>

map(phrase -> searchForPhrase(...))

~~

filter(not(SearchResults::iSEmpty))

~>

collect(toList())

Overview of Java 8 Parallel Streams

 When a stream executes in parallel, it is partitioned into multlple substream
“chunks” that run in a common fork-join pool

List eé _________________________ ! Search Phrases
<String> e 4 L

parallelStream()

Stream
<String>

5 U

hrase -> searchForPhrase(...))

filter(not(SearchResults::iSEmpty))

Stream
<SearchResults>

~>

collect(toList())

! I
! I
! I
. I
! 1
! I
! I
| I
l I
Stream : 4 v 4 y :
<SearchResults> : () () () () () () : {}
1 I
: v !
' O
| I
| I
| I
! J
; I

List
<SearchResults> ! ‘ O O O‘

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html

Overview of Java 8 Parallel Streams

 When a stream executes in parallel, it is partitioned into multlple substream
“chunks” that run in a common fork-join pool

List 95 _________________________ ! @ Search Phrases
<String> e

<SearchResults>

: |
: I
|
: I==|l===s oSSR =: parallelStreamo
Stl’eam 1 A A 4 \ 4 || A \ 4 v : -
<String> : :: :eé @
|
| 1 ! hrase -> searchForPhrase(...))
Stream s / v v I:) 4 v A
<SearchResults> : () () ():,() () e) : {}
|
I | I -
; filter(not(SearchResults::iSEm
Stream ! v v v (not(pty))
<SearchResults> | ! O O:: O ! @
1 |
: ' I :
: ' collect(toList())
List : !
1 -
I

Threads in the pool process different chunks in a non-deterministic order

Overview of Java 8 Parallel Streams

 When a stream executes in parallel, it is partitioned into multlple substream
“chunks” that run in a common fork-join pool

! ! Search Phrases

List
9
<String> é

parallelStream()
Stream -
<String> eé @

map(phrase -> searchForPhrase(...))
Stream

| N7

filter(not(SearchResults::isEmpty))

collect(toList())

<SearchResults>

Stream
<SearchResults>

List
<SearchResults>

RN DU U U U U ————— e

Intermediate operations iterate over & process these chunks in paralle/

Overview of Java 8 Parallel Streams

 When a stream executes in parallel, it is partitioned into multlple substream
“chunks” that run in a common fork-join pool

List eé _________________________ ! Search Phrases
<String> e 4 L

parallelStream()

s b

map(phrase -> searchForPhrase(...))

! I
! I
! I
. I
! 1
! I
! I
| I
l I
Stream : 4 v 4 y :
<SearchResults> : () () () () () () : {}
1 I
: v !
' O
| I
| I
| I
I
I -

Stream
<String>

filter(not(SearchResults::iSEmpty))

~~

collect(toList())

= (G 10 QN /

Stream
<SearchResults>

A terminal operation then combines the chunks into a single result

Overview of Java 8 Parallel Streams

 When a stream executes in parallel, it is partitioned into multlple substream
“chunks” that run in a common fork-join pool

List eé _________________________ ! Search Phrases
<String> e 4 }

parallelStream()

Stream
<String>

s b

map(phrase -> searchForPhrase(...))

filtter(not(SearchResults::isEmpty))
Stream —

Sy,

<SearchResults>

collect(toList())

! I
! I
! I
. I
! 1
! I
! I
| I
l I

Stream : h 4) 4 y v :

<SearchResults> : () () () () () () : {}
1 I
: v !
- O
| I
| I
| I
I i
I

List
<SearchResults> ! ‘O O O‘-; \ /

(Stateless) Java 8 lambda expressions & method references are used to pass behaviors

Overview of Java 8 Parallel Streams

 The same aggregate operations can be used for sequential & parallel streams

Medifier and Type

boolean

boolean

static <T> Stream.Builder<T>

<R,A> R

<R= R

static <T> Stream<T>

long

Stream<T>

static <T> Stream<T>

Stream<T>

Optional<T>

Optional<T>

<R> Stream<R>

Method and Description

allMatch(Predicate<? super T> predicate)

Returns whether all elements of this stream match the provided predicate,
anyMatch(Predicate<? super T> predicate)

Returns whether any elements of this stream match the provided predicate.

builder()

Returns a builder for a Stream.

collect(Collector=? super T,A,R> collector)

Performs a mutable reduction operation on the elements of this stream using a Collector.
collect(Supplier<R> supplier, BiConsumer<R,? super T> accumulator, BiConsumer<R,R> combiner)
Performs a mutable reduction operation on the elements of this stream.

concat(Stream<? extends T> a, Stream<? extends T> b)

Creates a lazily concatenated stream whose elements are all the elements of the first stream followed by all the elements of the second stream.
count(}

Returns the count of elements in this stream.

distinct()

Returns a stream consisting of the distinct elements (according to Object.equals({0Object)) of this stream.
enpty()

Returns an empty sequential Stream.

filter(Predicate<? super T> predicate)

Returns a stream consisting of the elements of this stream that match the given predicate.

findAny ()

Returns an Optional describing some element of the stream, or an empty Optional if the stream is empty.
findFirst()

Returns an Optional describing the first element of this stream. or an empty Optional if the stream is empty.
flatMap(Function<? super T,7 extends Stream<? extends R>> mapper)

Returns a stream consisting of the results of replacing each element of this stream with the contents of a mapped stream produced by applying the provided mapping
function to each element.

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

Overview of Java 8 Parallel Streams
 The same aggregate operations can be used for sequential & parallel streams

e.q., SearchStreamGang uses the same aggregate Hamiletes: &
operations for both SearchWithSequentialStreams I I Search Phrases

& SearchWithParalle/Streams implementations

\ stream() vs. parallelStream()
map(phrase -> searchForPhrase(...))

-

filter(not

—~

SearchResults::isEmpty))

-

collect(toList())

See qgithub.com/douglascraigschmidt/LiveLessons/tree/master/SearchStreamGang

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SearchStreamGang

Overview of Java 8 Parallel Streams
 The same aggregate operations can be used for sequential & parallel streams

« Java 8 streams can thus treat parallelism as an
optimization & leverage all available cores! e

VOLUME I @ Search Phrases

parallelStream()

~>

map(phrase -> searchForPhrase(...))

~~

filter(not(SearchResults::isEmpty))

~>

collect(toList())

See gconlondon.com/london-2017/system/files/presentation-slides/concurrenttoparallel.pdf

https://qconlondon.com/london-2017/system/files/presentation-slides/concurrenttoparallel.pdf

Overview of Java 8 Parallel Streams
 The same aggregate operations can be used for sequential & parallel streams

 Naturally, behaviors run by these aggregate 1 Search Phrases

operations must be designed carefully to varallelStream()

avoid accessing unsynchronized shared state.. U

map(phrase -> searchForPhrase(...))

~~

filter(not(SearchResults: iSEmpty))

Shared State

~~

collect(toList())

See henrikeichenhardt.blogspot.com/2013/06/why-shared-mutable-state-is-root-of-all.html

http://henrikeichenhardt.blogspot.com/2013/06/why-shared-mutable-state-is-root-of-all.html

Overview of How a
Parallel Stream Works

20

Overview of How a Parallel Stream Works

« A Java 8 parallel stream implements
a “map/reduce” variant optimized
for multi-core processors

&
£ \
>
o)
[

~., Reduce

See en.wikipedia.org/wiki/MapReduce

http://en.wikipedia.org/wiki/MapReduce

Overview of How a Parallel Stream Works

« A Java 8 parallel stream implements
a “map/reduce” variant optimized

for multi-core processors

 It’s actually more like the
“split-apply-combine”
data analysis strategy

DataSource

DataSource,

trySplit()

trySplit()

DataSource, ;

DataSource; ,

DataSource,

trySplit()

Process
sequentially

Process

sequentially

DataSource, ;

Process
sequentially

DataSource, ,

Process
sequentially

See www.|statsoft.org/article/view/v040i01

http://www.jstatsoft.org/article/view/v040i01

Overview of How a Parallel Stream Works

« Split-apply-combine works as follows: CollectionData
1. Split — Recursively partition a

trySplit()
data source into independent [colectionbata, CollectionData,
“chunks”
trySplit() trySplit()
CollectionData, ; CollectionData, , CollectionData, ; CollectionData, ,

See en.wikipedia.org/wiki/Divide and conquer algorithm

https://en.wikipedia.org/wiki/Divide_and_conquer_algorithm

Overview of How a Parallel Stream Works

« Split-apply-combine works as follows: CollectionData
1. Split — Recur_swel_y partition a trySplit()
data source into Ind6pendent CollectionData, CollectionData,
“chunks”
trySplit() trySplit()

« Spliterators are defined

CollectionData, , CollectionData, , CollectionData, , CollectionData, ,

to partition collections
In Java 8

public interface Spliterator<T> {
boolean tryAdvance(Consumer<? super T»> action) ;
Spliterator<T> trySplit() ;
long estimateSize();

int characteristics();

}

See docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html

https://docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html

Overview of How a Parallel Stream Works

« Split-apply-combine works as follows: InputString
1. Split — Recursively partition a trySplit()
data source into independent InputString, Inputstring,
“chunks”
trySplit() trySplit()
InputString, , InputString, , InputString, ; InputString, ,

Input Strings to Search

* You can also define custom

spliterators

Search Phrases

See qgithub.com/douglascraigschmidt/LiveLessons/tree/master/SearchStreamSpliterator

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SearchStreamSpliterator

Overview of How a Parallel Stream Works

« Split-apply-combine works as follows: InputString
1. Split — Recursively partition a trySplit()
data source into independent InputString, Inputstring,
“chunks”
trySplit() trySplit()
InputString, , InputString, , InputString, ; InputString, ,

» Parallel streams perform better
on data sources that can be
split efficiently & evenly

See www.airpair.com/java/posts/parallel-processing-of-io-based-data-with-java-streams

http://www.airpair.com/java/posts/parallel-processing-of-io-based-data-with-java-streams

Overview of How a Parallel Stream Works
« Split-apply-combine works as follows: ' |

2. Apply — Process chunks | | |

independently in a pool | | | |
of threads Proces_s Proces_s Proces_s Proces_s
sequentially sequentially sequentially sequentially

‘ S
4 Poo| of worker th\’e‘a@ .

Splitting & applying run simultaneously (after certain limit met), not sequentially

Overview of How a Parallel Stream Works

« Split-apply-combine works as follows:

2. Apply — Process chunks
independently in a pool

of threads

* Programmers have some
control over how many
threads are in the pool

Controller

| Plant

I I I I
Process Process Process Process
sequentially sequentially sequentially sequentially

Feedback

A booj of worker thread®

28

Overview of How a Parallel Stream Works

« Split-apply-combine works as follows:

3. Combine — Join partial
results into a single result

/’/

29

Overview of How a Parallel Stream Works
« Split-apply-combine works as follows:

3. Combine — Join partial
results into a single result

» Performed by terminal
operations like collect()
& reduce()

See www.codejava.net/java-core/collections/java-8-stream-terminal-operations-examples

http://www.codejava.net/java-core/collections/java-8-stream-terminal-operations-examples

End of Overview of
Java 8 Parallel Streams
(Part 1)

31

	Slide Number 1
	Learning Objectives in this Part of the Lesson
	Learning Objectives in this Part of the Lesson
	Overview of Java 8 Parallel Streams
	Overview of Java 8 Parallel Streams
	Overview of Java 8 Parallel Streams
	Overview of Java 8 Parallel Streams
	Overview of Java 8 Parallel Streams
	Overview of Java 8 Parallel Streams
	Overview of Java 8 Parallel Streams
	Overview of Java 8 Parallel Streams
	Overview of Java 8 Parallel Streams
	Overview of Java 8 Parallel Streams
	Overview of Java 8 Parallel Streams
	Overview of Java 8 Parallel Streams
	Overview of Java 8 Parallel Streams
	Overview of Java 8 Parallel Streams
	Overview of Java 8 Parallel Streams
	Overview of Java 8 Parallel Streams
	Overview of How a Parallel Stream Works
	Overview of How a Parallel Stream Works
	Overview of How a Parallel Stream Works
	Overview of How a Parallel Stream Works
	Overview of How a Parallel Stream Works
	Overview of How a Parallel Stream Works
	Overview of How a Parallel Stream Works
	Overview of How a Parallel Stream Works
	Overview of How a Parallel Stream Works
	Overview of How a Parallel Stream Works
	Overview of How a Parallel Stream Works
	End of Overview of �Java 8 Parallel Streams�(Part 1)

