
Java 8 Parallel Stream Internals
(Part 6)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software 
Integrated Systems

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

• Understand parallel stream internals, e.g.
• Know what can change & what can’t
• Partition a data source into “chunks”
• Process chunks in parallel
• Configure the Java 8 parallel 

stream common fork-join pool
• Avoid pool starvation & improve 

performance w/ManagedBlocker
• Perform a reduction that combines 

partial results into a single result
• Learn to implement a concurrent collector
• Recognize how a parallel stream is constructed & executed

Learning Objectives in this Part of the Lesson

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()
Output h(g(f(x)))



3

Parallel Stream 
Construction & Execution



4

• Recall that intermediate operations are “lazy”

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

See www.logicbig.com/tutorials/core-java-tutorial/java-util-stream/lazy-evaluation

Input x

Output f(x)

Output g(f(x))

Parallel Stream Construction & Execution

…

Stream sorted()
Output h(g(f(x)))

http://www.logicbig.com/tutorials/core-java-tutorial/java-util-stream/lazy-evaluation


5

• Recall that intermediate operations are “lazy”
• i.e., they don’t start to run until 

a terminal operator is reached

See www.logicbig.com/tutorials/core-java-tutorial/java-util-stream/lazy-evaluation

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()
Output h(g(f(x)))

Parallel Stream Construction & Execution

http://www.logicbig.com/tutorials/core-java-tutorial/java-util-stream/lazy-evaluation


6

• A stream pipeline is constructed at runtime via an internal representation

See www.ibm.com/developerworks/library/j-java-streams-3-brian-goetz/index.html#N1014E

At runtime a linked list of stream 
source & intermediate operations 

is build, one per “stage” in pipeline

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()

List<String> ls = ...
List<String> sortedAWords = ls

.stream()

.map(String::toUpperCase)

.filter(s -> 
s.startsWith("A"))

.sorted()

.collect(toList());

Output h(g(f(x)))

Parallel Stream Construction & Execution

http://www.ibm.com/developerworks/library/j-java-streams-3-brian-goetz/index.html#N1014E


7

• A stream pipeline is constructed at runtime via an internal representation
• Each pipeline stage is described by a 

bitmap of stream flags internally

Stream Flag Interpretation
SIZED Size of stream is known
DISTINCT Elements of stream are 

distinct
SORTED Elements of the stream 

are sorted in natural order
ORDERED Stream has meaningful 

encounter order

These flags are a subset of the flags that can be defined by a spliterator

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()
Output h(g(f(x)))

Parallel Stream Construction & Execution



8

• A stream pipeline is constructed at runtime via an internal representation
• Each pipeline stage is described by a 

bitmap of stream flags internally
• Source stage stream flags are derived 

from spliterator characteristics, e.g. Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()
Output h(g(f(x)))

Parallel Stream Construction & Execution

Stream generate() & iterate() methods create streams that are not sized!

Collection Sized Ordered Sorted Distinct

ArrayList  

HashSet  

TreeSet    



9

• A stream pipeline is constructed at runtime via an internal representation
• Each pipeline stage is described by a 

bitmap of stream flags internally
• Source stage stream flags are derived 

from spliterator characteristics
• Each intermediate operation affects 

the stream flags

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()
Output h(g(f(x)))

Parallel Stream Construction & Execution



10

• A stream pipeline is constructed at runtime via an internal representation
• Each pipeline stage is described by a 

bitmap of stream flags internally
• Source stage stream flags are derived 

from spliterator characteristics
• Each intermediate operation affects 

the stream flags, e.g.
• map()

• Clears SORTED & DISTINCT
but keeps SIZED

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()
Output h(g(f(x)))

Parallel Stream Construction & Execution



11

• A stream pipeline is constructed at runtime via an internal representation
• Each pipeline stage is described by a 

bitmap of stream flags internally
• Source stage stream flags are derived 

from spliterator characteristics
• Each intermediate operation affects 

the stream flags, e.g.
• map()
• filter()

• Keeps SORTED & DISTINCT
but clears SIZED

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()
Output h(g(f(x)))

Parallel Stream Construction & Execution



12

• A stream pipeline is constructed at runtime via an internal representation
• Each pipeline stage is described by a 

bitmap of stream flags internally
• Source stage stream flags are derived 

from spliterator characteristics
• Each intermediate operation affects 

the stream flags, e.g.
• map()
• filter()
• sorted()

• Keeps SIZED & DISTINCT & 
adds SORTED 

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()
Output h(g(f(x)))

Parallel Stream Construction & Execution



13

• A stream pipeline is constructed at runtime via an internal representation
• Each pipeline stage is described by a 

bitmap of stream flags internally
• Source stage stream flags are derived 

from spliterator characteristics
• Each intermediate operation affects 

the stream flags 
• As the pipeline is being constructed

the flags at each stage are updated

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()
Output h(g(f(x)))

Parallel Stream Construction & Execution



14

• A stream pipeline is constructed at runtime via an internal representation
• Each pipeline stage is described by a 

bitmap of stream flags internally
• Source stage stream flags are derived 

from spliterator characteristics
• Each intermediate operation affects 

the stream flags 
• As the pipeline is being constructed

the flags at each stage are updated
• e.g., flags for a previous stage are 

combined with the current stage’s 
behavior to derive a new set of flags

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()
Output h(g(f(x)))

Parallel Stream Construction & Execution



15

• A stream pipeline is constructed at runtime via an internal representation
• Each pipeline stage is described by a 

bitmap of stream flags internally
• Source stage stream flags are derived 

from spliterator characteristics
• Each intermediate operation affects 

the stream flags 
• As the pipeline is being constructed

the flags at each stage are updated
• e.g., flags for a previous stage are 

combined with the current stage’s 
behavior to derive a new set of flags

Set<String> ts = 
new TreeSet<>(...);

List<String> sortedAWords = 
ts
.stream()
.filter(s -> 

s.startsWith("a"))
.sorted()
.collect(toList());

Redundant operation can 
be elided since the 

source is already sorted 

Parallel Stream Construction & Execution



16

• When terminal operation runs the stream framework picks an execution plan

See www.ibm.com/developerworks/library/j-java-streams-3-brian-goetz/index.html#N101F6

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()
Output h(g(f(x)))

Parallel Stream Construction & Execution

http://www.ibm.com/developerworks/library/j-java-streams-3-brian-goetz/index.html#N101F6


17

• When terminal operation runs the stream framework picks an execution plan
• The plan is based on properties of the 

source & aggregate operations

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()
Output h(g(f(x)))

Parallel Stream Construction & Execution



18

• When terminal operation runs the stream framework picks an execution plan
• The plan is based on properties of the 

source & aggregate operations
• Intermediate operations are divided 

into two categories Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()
Output h(g(f(x)))

Parallel Stream Construction & Execution



19

• When terminal operation runs the stream framework picks an execution plan
• The plan is based on properties of the 

source & aggregate operations
• Intermediate operations are divided 

into two categories:
• Stateless

• e.g., filter(), map(), flatMap(), etc. 

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()
Output h(g(f(x)))

A pipeline with only stateless operations runs in one pass (even if it’s parallel)

Parallel Stream Construction & Execution



20

• When terminal operation runs the stream framework picks an execution plan
• The plan is based on properties of the 

source & aggregate operations
• Intermediate operations are divided 

into two categories:
• Stateless
• Stateful

• e.g., sorted(), limit(), distinct(), etc. 

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()
Output h(g(f(x)))

A pipeline with stateful operations is divided into sections & runs in multiple passes

Parallel Stream Construction & Execution



21

• When terminal operation runs the stream framework picks an execution plan
• The plan is based on properties of the 

source & aggregate operations
• Intermediate operations are divided 

into two categories
• Terminal operations are also divided

into two categories

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()
Output h(g(f(x)))

Parallel Stream Construction & Execution



22

• When terminal operation runs the stream framework picks an execution plan
• The plan is based on properties of the 

source & aggregate operations
• Intermediate operations are divided 

into two categories
• Terminal operations are also divided

into two categories
• Non-short-circuiting

• e.g., reduce(), collect(), forEach(),
etc.

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()
Output h(g(f(x)))

Terminal operation can process data in bulk using spliterator’s forEachRemaining() 

Parallel Stream Construction & Execution



23

• When terminal operation runs the stream framework picks an execution plan
• The plan is based on properties of the 

source & aggregate operations
• Intermediate operations are divided 

into two categories
• Terminal operations are also divided

into two categories
• Non-short-circuiting
• Short-circuiting

• e.g., anyMatch(), findFirst(), etc.

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R anyMatch(Predicate<…> pred)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()
Output h(g(f(x)))

Terminal operation must process data one element at a time using tryAdvance() 

Parallel Stream Construction & Execution



24

End of Java 8 Parallel 
Stream Internals (Part 6)


	Slide Number 1
	Learning Objectives in this Part of the Lesson
	Parallel Stream Construction & Execution
	Parallel Stream Construction & Execution
	Parallel Stream Construction & Execution
	Parallel Stream Construction & Execution
	Parallel Stream Construction & Execution
	Parallel Stream Construction & Execution
	Parallel Stream Construction & Execution
	Parallel Stream Construction & Execution
	Parallel Stream Construction & Execution
	Parallel Stream Construction & Execution
	Parallel Stream Construction & Execution
	Parallel Stream Construction & Execution
	Parallel Stream Construction & Execution
	Parallel Stream Construction & Execution
	Parallel Stream Construction & Execution
	Parallel Stream Construction & Execution
	Parallel Stream Construction & Execution
	Parallel Stream Construction & Execution
	Parallel Stream Construction & Execution
	Parallel Stream Construction & Execution
	Parallel Stream Construction & Execution
	End of Java 8 Parallel Stream Internals (Part 6)

