Java 8 Parallel Stream Internals

(Part5)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
‘ ;7 Integrated Systems
Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson
e Understand parallel stream internals, e.g.

Process Process Process Process
sequentially sequentially sequentially sequentially

e Perform a reduction that combines
partial results into a single result

See www.ibm.com/developerworks/library/j-java-streams-3-brian-goetz

http://www.ibm.com/developerworks/library/j-java-streams-3-brian-goetz

Combining Results
INn a Parallel Stream

Combining Results in a Parallel Stream

» After the common fork-join pool finishes DataSource
processing chunks their partial results
are combined into a final result
DataSource, DataSource,
DataSource, ; DataSource; , DataSource, ; DataSource, ,
I I I I
Process Process Process Process

sequentially sequentially sequentially sequentially

Final result

Partial
results

This discussion assumes a non-concurrent collector (more discussions follow)

Combining Results in a Parallel Stream

 After the common fork-join pool finishes DataSource
processing chunks their partial results
are combined into a final result

DataSource, DataSource,
 join() occurs in a single
thread at each level
] . ., DataSource, ; DataSource; , DataSource, ; DataSource, ,
* i.e., the “parent | | | |
Process Process Process Process
sequentially sequentially sequentially sequentially

“Children”

Join

“Parent”

Combining Results in a Parallel Stream

 After the common fork-join pool finishes DataSource
processing chunks their partial results
are combined into a final result

DataSource, DataSource,
 join() occurs in a single
thread at each level
] . ., DataSource, ; DataSource; , DataSource, ; DataSource, ,
* i.e., the “parent | | | |
Process Process Process Process
sequentially sequentially sequentially sequentially

“Children”

Join

“Parent”

As a result, there’s typically no need for synchronizers during the joining

Combining Results in a Parallel Stream

» Different terminal operations combine
partial results in different ways

Understanding these differences is particularly important for parallel streams

Combining Results in a Parallel Stream

» Different terminal operations combine
partial results in different ways, e.g.

* reduce() creates a new
Immutable value

See docs.oracle.com/javase/tutorial/essential/concurrency/immutable.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/immutable.html

Combining Results in a Parallel Stream

 Different terminal operations combine

partial results in different ways, e.g.

Range of longs from 1..8

longs 5..8

* reduce() creates a new longs 1..4
Immutable value
longs 1..2 longs 3..4
I I
Process Process
sequentially sequentially

long factorial(long n) {
return LongStream
-.rangeClosed(1, n)
-parallel ()
.reduce(1, (a, b) -> a * b,
(a, b) -> a * b);

longs 5..6

longs 7..8

Process

Process

sequentially sequentially

See github.com/douglascraigschmidt/LivelLessons/tree/master/Java8/ex16

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

Combining Results in a Parallel Stream

 Different terminal operations combine

partial results in different ways, e.g.

Range of longs from 1..8

* reduce() creates a new longs 1..4
Immutable value
longs 1..2 longs 3..4
I I
Process Process
sequentially sequentially

long factorial(long n) {
return LongStream
.rangeClosed(1, n)
-parallel ()
.reduce(1, (a, b) -> a * b,
(a, b) ->a * b);

longs 5..8
longs 5..6 longs 7..8
I I
Process Process
sequentially sequentially

reduce() combines two immutable values (e.g., long or Long) & produces a new one

Combining Results in a Parallel Stream

» Different terminal operations combine
partial results in different ways, e.g.

 collect() mutates an
existing value

See greenteapress.com/thinkapjava/html/thinkjava011.html

http://greenteapress.com/thinkapjava/html/thinkjava011.html

Combining Results in a Parallel Stream

 Different terminal operations combine All words in Shakespeare’s works
partial results in different ways, e.g.

1st half of words 2nd half of words
° CO ”eCt() m Utates an 1st quarter of words 2nd quarter of words 3rd quarter of words 4t quarter of words
existing value | | | |
Process Process Process Process

} sequentially sequentially sequentially sequentially

List<CharSequence>
uniqueWords =
getinput(sSHAKESPEARE),

| | I\\S+ | | I)

-.parallelStream()

.collect(toCollection(TreeSet::new));

See github.com/douglascraigschmidt/LivelLessons/tree/master/Java8/ex14

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex14

Combining Results in a Parallel Stream

» Different terminal operations combine
partial results in different ways, e.g.

All words in Shakespeare’s works

1st half of words

i CO”eCt() mUtateS an 1st quarter of words

2nd quarter of words

2nd half of words

existing value |

Process
} sequentially
List<CharSequence>
uniqueWords =
getInput(sSHAKESPEARE),
Il\\S+I I)

-parallelStream()

Process
sequentially

collect()

.collect(toCollection(TreeSet::new));

3rd quarter of words

collect()

Process
sequentially

collect()

4t quarter of words

Process
sequentially

collect() mutates a container to accumulate the result it’s producing

Combining Results in a Parallel Stream

 Different terminal operations combine All words in Shakespeare’s works
partial results in different ways, e.g.

1st half of words 2nd half of words
° CO ”eCt() m Utates an 1st quarter of words 2nd quarter of words 3rd quarter of words 4t quarter of words
existing value | | | |
Process Process Process Process
) sequentially sequentially sequentially sequentially
List<CharSequence>
uniqueWords = accumulate()

getin pUt(:S:’SHAKESPEARE) ? accumulate() Concurrent accumulate()
\\s+"") Result Container
-.parallelStream()

.collect(ConcurrentHashSetCollector.toSet());

Concurrent collectors are different than non-concurrent collectors (covered later)

Combining Results in a Parallel Stream

* More discussion about reduce()
vs. collect() appears online

STREAMS IN JAVA 8 (PART 01/02):

REDUCE VS COLLEC Stream API
e e T reduce() / collect()

Angelika Langer & Klaus Kreft

B Bplidg)ire1s /4457

Streams in Java 8: Reduce vs. Collect

See www.youtube.com/watch?v=o0WIWEKNM5Aw

http://www.youtube.com/watch?v=oWlWEKNM5Aw

Combining Results in a Parallel Stream

« More discussion about reduce() void buggyStreamReduce

vs. collect() appears online, e.g. (boolean parallel) {
* Always test w/a parallel stream Stream<String> wordStream =
to detect mistakes wrt mutable alIWords.stream();

vs. immutable reductions

iIT (parallel)
wordStream.parallel();

String words = wordStream
.reduce(new StringBuilder(),
StringBuilder: tappend,
StringBuilder: tappend)
-toString();

See github.com/douglascraigschmidt/LivelLessons/tree/master/Java8/ex17

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex17

Combining Results in a Parallel Stream

« More discussion about reduce() void buggyStreamReduce
vs. collect() appears online, e.g. (boolean parallel) {

* Always test w/a parallel stream Stream<String> wordStream =
to detect mistakes wrt mutable al lWords.stream();

vs. immutable reductions

iIT (parallel)
wordStream.parallel();

This code falls when parallel() is /
used since reduce() expects to String words = wordStream

ao an ‘immutable” reduction | ——— _reduce(new StringBuilder(),
StringBuilder: tappend,
StringBuilder: tappend)
-toString();

17

Combining Results in a Parallel Stream

« More discussion about reduce() void buggyStreamReduce
vs. collect() appears online, e.g. (boolean parallel) {

* Always test w/a parallel stream Stream<String> wordStream =
to detect mistakes wrt mutable al IWords.stream():

vs. immutable reductions

iIT (parallel)
wordStream.parallel();

String words = wordStream
-reduce(new StringBuilder(),

There are race conditions here since /Stri ngBuilder: append,
there’s just one shared StringBuilder, StringBuilder: tappend)

which Is not properly thread-safe.. -toString();

18

Combining Results in a Parallel Stream

* More discussion about reduce()
vs. collect() appears online, e.g.

» Always test w/a parallel stream

void buggyStreamReduce
(boolean parallel) {

Stream<String> wordStream =

to detect mistakes wrt mutable al lWords.stream();

vs. immutable reductions

A stream can be dynamically
switched to “parallel” mode!

iIT (parallel)
wordStream.parallel();

String words = wordStream

.reduce(new StringBuilder(),
StringBuilder: tappend,
StringBuilder: tappend)

-toString();

19

Combining Results in a Parallel Stream

* More discussion about reduce() @ void testDifferenceReduce(...) {

vs. collect() appears online, e.g. long difference = LongStream
-rangeClosed(1, 100)
.parallel ()
-reduce(OL,

X, ¥Y) > X - VY);
» Beware of issues related to }

association & identity _ _ _
void testSum(long identity, ...) {

long sum = LongStream
-rangeClosed(1, 100)
.reduce(identity,
// Could use (X, y) -> X +y
Math: -addExact);

See github.com/douglascraigschmidt/LivelLessons/tree/master/Java8/ex17

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex17

Combining Results in a Parallel Stream

* More discussion about reduce() @ void testDifferenceReduce(...) {

vs. collect() appears online, e.g. long difference = LongStream
-rangeClosed(1, 100)
.parallel ()
-reduce(OL,

(X’ y) -> X - y);
» Beware of issues related to }

association & identity] _ _
void testSum(long identity, ...) {

. . long sum = LongStream
This code fails for a paralle/ _rangeClosed(1, 100)

stream since subtraction
/S not associative

.reduce(identity,
// Could use (X, y) -> X + vy
Math: -addExact);

See www.ibm.com/developerworks/library/j-jJava-streams-2-brian-goetz

http://www.ibm.com/developerworks/library/j-java-streams-2-brian-goetz

Combining Results in a Parallel Stream

* More discussion about reduce() @ void testDifferenceReduce(...) {

vs. collect() appears online, e.g. long difference = LongStream
-rangeClosed(1, 100)
.parallel ()
-reduce(OL,

X, ¥Y) > X - VY);
» Beware of issues related to }

association & identity _))
void testSum(long identity, ...) {

long sum = LongStream
-.rangeClosed(1, 100)

' = .reduce(identity,
This code fails if // Could use (X, y) -> X + vy
/dentity Is not OL Math: :addExact);

The “identity” of an OP is defined as “identity OP value == value”

Implementing Concurrent &
Non-Concurrent Collectors

23

Implementing Concurrent & Non-Concurrent Collectors

» Collector defines an interface
whose implementations can
accumulate input elements
In a mutable result container

Interface Collector<T,A,R>

Type Parameters:

T - the type of input elements to the reduction operation

A - the mutable accumulation type of the reduction operation (often hidden as
an implementation detail)

R - the result type of the reduction operation

public interface Collector<T,A,R>

A mutable reduction operation that accumulates input elements into a mutable result
container, optionally transforming the accumulated result into a final representation after
all input elements have been processed. Reduction operations can be performed either
sequentially or in parallel.

Examples of mutable reduction operations include: accumulating elements into a
Collection; concatenating strings using a StringBuilder; computing summary
information about elements such as sum, min, max, or average; computing "pivot table"
summaries such as "maximum valued transaction by seller", etc. The class Collectors
provides implementations of many common mutable reductions.

A Collector is specified by four functions that work together to accumulate entries into a
mutable result container, and optionally perform a final transform on the result. They are:

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

Implementing Concurrent & Non-Concurrent Collectors
» Collector implementations can either be |enum coliector.characteristics

java.lang.Object

non-concurrent or concurrent based

java.util.stream.Collector.Characteristics

O n th el r C h aracte rlstl CS All Implemented Interfaces:

Serializable, Comparable<Collector.Characteristics=>

Enclosing interface:
Collector<T,A,R>

public static enum Collector.Characteristics
extends Enum<Collector.Characteristics>

Characteristics indicating properties of a Collector, which can be used to optimize
reduction implementations

Enum Constant Summary

Enum Constants
Enum Constant and Description
CONCURRENT
Indicates that this collector is concurrent, meaning that the result container can

support the accumulator function being called concurrently with the same result
container from multiple threads.

IDENTITY_FINISH
Indicates that the finisher function is the identity function and can be elided.

UNORDERED
Indicates that the collection operation does not commit to preserving the encounter
order of input elements.

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.Characteristics.html

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.Characteristics.html

Implementing Concurrent & Non-Concurrent Collectors

» Collector implementations can either be
non-concurrent or concurrent based IS

on their characteristics -_:é--@__“:é"ii“:é“ii_:g“

» This distinction is only relevant for
parallel streams . .
F 8
map(this::downloadimage)

2

flatMap(this::applyFilters)

v

collect(toList())

See “Overview of Java 8 Streams (Part 4)”for non-concurrent collector implementation

Implementing Concurrent & Non-Concurrent Collectors

» Collector implementations can either be
non-concurrent or concurrent based
on their characteristics

* A non-concurrent collector can be
used for either a sequential stream
or a parallel stream!

We'll just focus on parallel streams in the subsequent discussion

Implementing Concurrent & Non-Concurrent Collectors

* A non-concurrent collector operates
by merging sub-results

See stackoverflow.com/questions/22350288/parallel-streams-collectors-and-thread-safety

https://stackoverflow.com/questions/22350288/parallel-streams-collectors-and-thread-safety

Implementing Concurrent & Non-Concurrent Collectors

* A non-concurrent collector operates
by merging sub-results

» The input source is partitioned
Into chunks

InputSource
trySplit()
InputSource; InputSource,
trySplit() trySplit()
InputSource, ; InputSource, , | | InputSource, ; InputSource, ,

29

Implementing Concurrent & Non-Concurrent Collectors

* A non-concurrent collector operates
by merging sub-results

 Each chunk is collected into a

result container

- I I I I
* €.0.,a list or a map Process Process Process Process

sequentially sequentially sequentially sequentially

Q O Q O

30

Implementing Concurrent & Non-Concurrent Collectors

* A non-concurrent collector operates
by merging sub-results

 Each chunk is collected into a
result container
I I I I

* €.0.,a list or a map Process Process Process Process

sequentially sequentially sequentially sequentially

Q O QO O

Different threads operate on different instances of intermediate result containers

Implementing Concurrent & Non-Concurrent Collectors

* A non-concurrent collector operates
by merging sub-results

 These sub-results are then
merged into a final mutable
result container

* Only one thread in the fork-join
pool is used to merge any pair
of intermediate results

32

Implementing Concurrent & Non-Concurrent Collectors

* A non-concurrent collector operates
by merging sub-results

 These sub-results are then
merged into a final mutable
result container

* Only one thread in the fork-join
pool is used to merge any pair
of intermediate results

S

Join

Thus there’s no need for any synchronizers in a non-concurrent collector

Implementing Concurrent & Non-Concurrent Collectors

* A non-concurrent collector operates
by merging sub-results

EEDaAL s rOVE NOxE|
TAM%BEI; s

fg%? \ K 72390245

K72390245
1] Sty 5

Process Process Process Process
sequentially sequentially sequentially sequentially

This process Is safe & order-
preserving, but merging Is costly
for containers like maps & sets

34

Implementing Concurrent & Non-Concurrent Collectors

* A concurrent collector creates one
concurrent result container & inserts
elements into it from multiple threads
In a parallel stream

See stackoverflow.com/questions/22350288/parallel-streams-collectors-and-thread-safety

https://stackoverflow.com/questions/22350288/parallel-streams-collectors-and-thread-safety

Implementing Concurrent & Non-Concurrent Collectors

* A concurrent collector creates one

concurrent result container & inserts
elements into it from multiple threads

In a parallel stream

« As usual, the input source is
partitioned into chunks

InputSource

InputSource;

trySplit()

trySplit()

InputSource,

trySplit()

InputSource, ;

InputSource, ,

InputSource, ; InputSource, ,

36

Implementing Concurrent & Non-Concurrent Collectors

* A concurrent collector creates one
concurrent result container & inserts
elements into it from multiple threads
In a parallel stream

e Each chunk is collected into one | I I I
. Process Process Process Process
concurrent result container

sequentially sequentially sequentially sequentially

* €.g., a concurrent map or set ‘\ kaccumu/ate()) /I
accumulate() accumulate()
Concurrent

37

Implementing Concurrent & Non-Concurrent Collectors

* A concurrent collector creates one
concurrent result container & inserts
elements into it from multiple threads
In a parallel stream

e Each chunk is collected into one | I I I
. Process Process Process Process
concurrent result container

sequentially sequentially sequentially sequentially

* €.g., a concurrent map or set ‘\ k accumulate()) /I
accumulate() 2 A accumulate()
Concurrent
Esu/t Container

Different threads in a parallel stream share one concurrent result container

Implementing Concurrent & Non-Concurrent Collectors

* A concurrent collector creates one
concurrent result container & inserts
elements into it from multiple threads
In a parallel stream

Thus there’s no need to merge
any intermediate sub-results!

Of course, encounter order is not preserved..

Implementing Concurrent & Non-Concurrent Collectors

A concurrent collector may perform <<Java Interface>>
Coll TAR

better than a non-concurrent collector LEHIEEA

If merging costs are high

@ supplier():Supplier<A>

@ accumulator():BiConsumer<A,T>

@ combiner():BinaryOperator<A>

@ finisher():Function<A,R>

@ characteristics():Set<Characteristics>

e

<<Java Class>>
(& ConcurrentHashSetCollector<T>

OcConcurrentHashSetCoIIector()

@ supplier():Supplier<ConcurrentHashSet<T>>

@ accumulator():BiConsumer<ConcurrentHashSet<T>T>

@ combiner():BinaryOperator<ConcurrentHashSet<T>>

@ finisher():Function<ConcurrentHashSet<T>,ConcurrentHashSet<T>>
@ characteristics():Set
@'toSet():Collector<E,?,ConcurrentHashSet<E>>

See github.com/douglascraigschmidt/LivelLessons/tree/master/Java8/ex14

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex14

Implementing Concurrent & Non-Concurrent Collectors

A concurrent collector may perform SynchronizedMap
better than a non-concurrent collector
If merging costs are high

e e.g., for a highly optimized result
container like ConcurrentHashMap _,ﬂ

ConcurrentHashMap

Multiple
Thread 3 is ’

waiting on the

same ~E§|‘|€rtﬁ Thread J

Reading

Thread 1 threads

vsS. merging HashMaps Thrend 2
Thread 2
Thread-Safe. Thread-5afe.
Slow Performance. Fast Performance.
null key and null key and values
multiple null values are not allowed

are allowed

See wwww.guora.com/What-is-the-difference-between-synchronize-and-concurrent-collection-in-Java

http://www.quora.com/What-is-the-difference-between-synchronize-and-concurrent-collection-in-Java

Implementing Concurrent & Non-Concurrent Collectors

» The Collector interface defines e

three generic types @ Collector<T,A,R> |

@ supplier():Supplier<A>

@ accumulator():BiConsumer<A,T>

@ combiner():BinaryOperator<A>

@ finisher():Function<A,R>

@ characteristics():Set<Characteristics>

See www.baeldung.com/java-8-collectors

http://www.baeldung.com/java-8-collectors

Implementing Concurrent & Non-Concurrent Collectors

* The Collector interface defines <<Java Interface>>
three generic types @ Collector{TJA,R>

« T — The type of objects available

in the stream @ supplier():Supplier<A>

_ @ accumulator():BiConsumer<A,T>

* e.g., Integer, String, etc. @ combiner():BinaryOperator<A>

@ finisher():Function<A,R>

@ characteristics():Set<Characteristics>

43

Implementing Concurrent & Non-Concurrent Collectors

* The Collector interface defines <<Java Interface>>
three generic types @ Collector<TA|R>

@ supplier():Supplier<A>

* A —The type of a mutable @ accumulator():BiConsumer<A,T>

accumulator object for collection o combiner():BinaryOperator<A>
e e.dg., ConcurrentHashSet or @ finisher():Function<A,R>
ArrayList of T @ characteristics():Set<Characteristics>

44

Implementing Concurrent & Non-Concurrent Collectors

 The Collector interface defines <<Java Interface>>
three generic types @ Collector<T,A[Rp

@ supplier():Supplier<A>
@ accumulator():BiConsumer<A,T>

R — The type of a final result @ combiner():BinaryOperator<A>
e e.g., ConcurrentHashSet or @ finisher():Function<A,R>

ArrayList of T

@ characteristics():Set<Characteristics>

See www.baeldung.com/java-8-collectors

http://www.baeldung.com/java-8-collectors

Implementing Concurrent & Non-Concurrent Collectors

* Five methods are defined in the Bl —
Collector interface @ Collector<T,A,R>

@ supplier():Supplier<A>

@ accumulator():BiConsumer<A,T>

@ combiner():BinaryOperator<A>

@ finisher():Function<A,R>

@ characteristics():Set<Characteristics>

)
e

46

Implementing Concurrent & Non-Concurrent Collectors
 Five methods are defined in the B —

Collector interface € Collector<T,A,R>

e characteristics() — provides a
stream with additional information
used for internal optimizations, e.g.

@ supplier():Supplier<A>
@ accumulator():BiConsumer<A,T>

@ combiner():BinaryOperator<A>
« UNORDERED @ finisher():Function<A,R>

* The collector need not preserve ﬂcharacteristics():Set<Characteristics>I

the encounter order

A concurrent collector shouldbe UNORDERED, but a non-concurrent collector carnnbe ORDERED

Implementing Concurrent & Non-Concurrent Collectors
 Five methods are defined in the B —

Collector interface € Collector<T,A,R>

e characteristics() — provides a
stream with additional information
used for internal optimizations, e.g.

@ supplier():Supplier<A>

@ accumulator():BiConsumer<A,T>
@ combiner():BinaryOperator<A>
@ finisher():Function<A,R>

 IDENTIFY_FINISH ﬂ characteristics():Set<Characteristics> I

» The finisher() is the identity
function so it can be a no-op

* e.g. finisher() just returns null

A concurrent collector shouldbe IDENTITY _FINISH, whereas a non-concurrent collector could be

Implementing Concurrent & Non-Concurrent Collectors
 Five methods are defined in the B —

Collector interface € Collector<T,A,R>

e characteristics() — provides a
stream with additional information
used for internal optimizations, e.g.

@ supplier():Supplier<A>

@ accumulator():BiConsumer<A,T>
@ combiner():BinaryOperator<A>
@ finisher():Function<A,R>

f‘] characteristics():Set<Characteristics> I
e CONCURRENT

* The accumulator() method is called concurrently on the result
container

« Naturally, the mutable result container must be synchronized!!

A concurrent collector sfouldbe CONCURRENT, but a non-concurrent collector should ot be!

Implementing Concurrent & Non-Concurrent Collectors

* Five methods are defined in the Bl —

Collector interface € Collector<T,A,R>

e characteristics() — provides a
stream with additional information
used for internal optimizations, e.g.

@ supplier():Supplier<A>

@ accumulator():BiConsumer<A,T>
@ combiner():BinaryOperator<A>
@ finisher():Function<A,R>

ﬂ characteristics():Set<Characteristics> I

e CONCURRENT

» The combiner() method is a no-op since it's not called at all

50

Implementing Concurrent & Non-Concurrent Collectors
* Five methods are defined in the <<Java Interface>>

Collector interface € Collector<T,A,R>

e characteristics() — provides a
stream with additional information
used for internal optimizations, e.g.

@ supplier():Supplier<A>

@ accumulator():BiConsumer<A,T>
@ combiner():BinaryOperator<A>
@ finisher():Function<A,R>

EI characteristics():Set<Characteristics> I

e CONCURRENT

A non-concurrent collector can be used with either sequential or parallel streams

Implementing Concurrent & Non-Concurrent Collectors

* Five methods are defined in the
Collector interface

e characteristics() — provides a
stream with additional information

used for internal optimizations, e.g.

« UNORDERED
e IDENTIFY_FINISH
e CONCURRENT

<<Java Class>>
G ConcurrentHashSetCollector<T>

@ ConcurrentHashSetCollector()
© supplier():Supplier<ConcurrentHashSet<T>>
@ accumulator():BiConsumer<ConcurrentHashSet<T>T>
(=] comblner() BlnaryOperator<ConcurrentHashSet<T>>
<ConcurrentHashSet<T>,ConcurrentHashSet<T>>
@ charactenstlcs() Set

,7,ConcurrentHashSet<E>>

return Collections.unmodifiableSet
(EnumSet.of(Collector.Characteristics.CONCURRENT,
Collector.Characteristics.UNORDERED,
Collector.Characteristics.IDENTITY_FINISH));

See github.com/douglascraigschmidt/LivelLessons/tree/master/Java8/ex14

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex14

Implementing Concurrent & Non-Concurrent Collectors

* Five methods are defined in the Bl —
Collector interface @ Collector<T,A,R>

] _ -:::Isupplier():SuppIier<A>|

* supplier() —returns a supplier @ accumulator():BiConsumer<A,T>
instance tha_t generates an empty o combiner():BinaryOperator<A>
result container @ finisher():Function<A,R>

@ characteristics():Set<Characteristics>

53

Implementing Concurrent & Non-Concurrent Collectors

* Five methods are defined in the
Collector interface

<<Java Interface>>
&3 Collector<T,A,R>

-:::I supplier():SuppIier<A>|
@ accumulator():BiConsumer<A,T>

o supplier() —returns a supplier

Instance that generates an empty o combiner():BinaryOperator<A>

result container, e.g. @ finisher():Function<A,R>
 return ArrayList::new @ characteristics():Set<Characteristics>

A non-concurrent collector has a different result container for each thread in a parallel stream

Implementing Concurrent & Non-Concurrent Collectors

 Five methods are defined in the <<Java Class>>
. G ConcurrentHashSetCollector<T>
Collector interface

OcConcurrentHashSetCoIlector()
@ supplier():Supplier<ConcurrentHashSet<T>>
@ accumulator():BiConsumer<ConcurrentHashSet<T>T>

e Su p p I | e r() _ retu rns a su ppl ie r @ combiner():BinaryOperator<ConcurrentHashSet<T>>

@ finisher():Function<ConcurrentHashSet<T>,ConcurrentHashSet<T>>

Instance that generates an empty | e characteristics():Set
) @’toSet():Collector<E,?,ConcurrentHashSet<E>>
result container, e.g.

e return ConcurrentHashSet: :new

A concurrent collector has one result container shared by each thread in a parallel stream

Implementing Concurrent & Non-Concurrent Collectors

* Five methods are defined in the Bl —
Collector interface @ Collector<T,A,R>

@ supplier():Supplier<A>
{:I accumulator():BiConsumer<A, T>

e accumulator() — returns a @ combiner():BinaryOperator<A>
biconsumer that adds a new @ finisher():Function<A,R>
element to result container @ characteristics():Set<Characteristics>

56

Implementing Concurrent & Non-Concurrent Collectors

* Five methods are defined in the Bl —
Collector interface @ Collector<T,A,R>

@ supplier():Supplier<A>
{:I accumulator():BiConsumer<A, T>

e accumulator() — returns a @ combiner():BinaryOperator<A>
biconsumer that adds a new @ finisher():Function<A,R>
element to result container, e.q. @ characteristics():Set<Characteristics>

e return ArrayList::add

A non-concurrent collector’s methods should not be synchronized!

Implementing Concurrent & Non-Concurrent Collectors

 Five methods are defined in the <<Java Class>>

. G ConcurrentHashSetCollector<T>
Collector interface

@ ConcurrentHashSetCollector()

@ supplier():Supplier<ConcurrentHashSet<T>>

@ accumulator():BiConsumer<ConcurrentHashSet<T>T>

@ combiner():BinaryOperator<ConcurrentHashSet<T>>

@ finisher():Function<ConcurrentHashSet<T>,ConcurrentHashSet<T>>
© characteristics():Set

« accumulator () — returns a @’toSet():Collector<E,?,ConcurrentHashSet<E>>

biconsumer that adds a new
element to result container, e.qg.

e return ConcurrentHashSet: :add

A concurrent collector’'s methods must be synchronized!

Implementing Concurrent & Non-Concurrent Collectors

* Five methods are defined in the Bl —
Collector interface @ Collector<T,A,R>

@ supplier():Supplier<A>
@ accumulator():BiConsumer<A,T>
{:I combiner():BinaryOperator<A> |

e combiner() —returns a function @ finisher():Function<A,R>
that merges two result containers @ characteristics():Set<Characteristics>
together

59

Implementing Concurrent & Non-Concurrent Collectors

 Five methods are defined in the <<Java Class>>

. G ConcurrentHashSetCollector<T>
Collector interface

@ ConcurrentHashSetCollector()

© supplier():Supplier<ConcurrentHashSet<T>>

@ accumulator():BiConsumer<ConcurrentHashSet<T>T>

@ finisher():Function<ConcurrentHashSet<T>,ConcurrentHashSet<T>>

© characteristics():Set
eestOSel():Collector<E,?,ConcurrentHashSetﬁE»

 combiner() — returns a function
that merges two result containers
together, e.qg.
e return (one, another) -> {
one.addAll (another); return one;

}

60

Implementing Concurrent & Non-Concurrent Collectors

* Five methods are defined in the Bl —
Collector interface @ Collector<T,A,R>

@ supplier():Supplier<A>

@ accumulator():BiConsumer<A,T>

{:I combiner():BinaryOperator<A> |

@ finisher():Function<A,R>

@ characteristics():Set<Characteristics>

 combiner() — returns a function
that merges two result containers

together, e.qg.

e return null

The combiner() method is not called when CONCURRENT is set

Implementing Concurrent & Non-Concurrent Collectors

* Five methods are defined in the Bl —
Collector interface @ Collector<T,A,R>

@ supplier():Supplier<A>

@ accumulator():BiConsumer<A,T>

@ combiner():BinaryOperator<A>

& finisher():Function<A,R> |

@ characteristics():Set<Characteristics>

e finisher() — returns a function
that converts the result container
to final result type

62

Implementing Concurrent & Non-Concurrent Collectors

* Five methods are defined in the Bl —
Collector interface @ Collector<T,A,R>

@ supplier():Supplier<A>

@ accumulator():BiConsumer<A,T>

@ combiner():BinaryOperator<A>

& finisher():Function<A,R> |

@ characteristics():Set<Characteristics>

e finisher() — returns a function
that converts the result container
to final result type, e.g.

 Function.identity() or something much more interesting!

63

Implementing Concurrent & Non-Concurrent Collectors

 Five methods are defined in the <<Java Class>>

. G ConcurrentHashSetCollector<T>
Collector interface

@ ConcurrentHashSetCollector()
© supplier():Supplier<ConcurrentHashSet<T>>
@ accumulator():BiConsumer<ConcurrentHashSet<T>T>

" < {<T>>
IO finisher():Function<ConcurrentHashSet<T>,ConcurrentHashSet<T>> I

© characteristics():Set
ostoSel():Collector<E,?,ConcurrentHashSet¢E>>

e finisher() — returns a function
that converts the result container
to final result type, e.g.

e return null

The finisher() method is not called when IDENTITY_FINISHER is set

End of Java 8 Parallel
Stream Internals (Part 5)

65

	Slide Number 1
	Learning Objectives in this Part of the Lesson
	Combining Results �in a Parallel Stream
	Combining Results in a Parallel Stream
	Combining Results in a Parallel Stream
	Combining Results in a Parallel Stream
	Combining Results in a Parallel Stream
	Combining Results in a Parallel Stream
	Combining Results in a Parallel Stream
	Combining Results in a Parallel Stream
	Combining Results in a Parallel Stream
	Combining Results in a Parallel Stream
	Combining Results in a Parallel Stream
	Combining Results in a Parallel Stream
	Combining Results in a Parallel Stream
	Combining Results in a Parallel Stream
	Combining Results in a Parallel Stream
	Combining Results in a Parallel Stream
	Combining Results in a Parallel Stream
	Combining Results in a Parallel Stream
	Combining Results in a Parallel Stream
	Combining Results in a Parallel Stream
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	End of Java 8 Parallel Stream Internals (Part 5)

