
Java 8 Parallel Stream Internals
(Part 5)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

• Understand parallel stream internals, e.g.
• Know what can change & what can’t
• Partition a data source into “chunks”
• Process chunks in parallel
• Configure the Java 8 parallel

stream common fork-join pool
• Avoid pool starvation & improve

performance w/ManagedBlocker
• Perform a reduction that combines

partial results into a single result

Learning Objectives in this Part of the Lesson

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

trySplit()

InputString

trySplit() trySplit()

See www.ibm.com/developerworks/library/j-java-streams-3-brian-goetz

http://www.ibm.com/developerworks/library/j-java-streams-3-brian-goetz

3

Combining Results
in a Parallel Stream

4

• After the common fork-join pool finishes
processing chunks their partial results
are combined into a final result

Combining Results in a Parallel Stream

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

Partial
results

Final result

This discussion assumes a non-concurrent collector (more discussions follow)

5

• After the common fork-join pool finishes
processing chunks their partial results
are combined into a final result
• join() occurs in a single

thread at each level
• i.e., the “parent”

Combining Results in a Parallel Stream

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

“Parent”

“Children”

6

• After the common fork-join pool finishes
processing chunks their partial results
are combined into a final result
• join() occurs in a single

thread at each level
• i.e., the “parent”

Combining Results in a Parallel Stream

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

As a result, there’s typically no need for synchronizers during the joining

“Parent”

“Children”

7

• Different terminal operations combine
partial results in different ways

Combining Results in a Parallel Stream

Understanding these differences is particularly important for parallel streams

8

• Different terminal operations combine
partial results in different ways, e.g.
• reduce() creates a new

immutable value

Combining Results in a Parallel Stream

See docs.oracle.com/javase/tutorial/essential/concurrency/immutable.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/immutable.html

9

• Different terminal operations combine
partial results in different ways, e.g.
• reduce() creates a new

immutable value

Combining Results in a Parallel Stream

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

longs 1..2 longs 3..4 longs 5..6 longs 7..8

longs 1..4 longs 5..8

Range of longs from 1..8

long factorial(long n) {
return LongStream
.rangeClosed(1, n)
.parallel()
.reduce(1, (a, b) -> a * b,

(a, b) -> a * b);
}

2 12 30 56

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

10

long factorial(long n) {
return LongStream
.rangeClosed(1, n)
.parallel()
.reduce(1, (a, b) -> a * b,

(a, b) -> a * b);
}

• Different terminal operations combine
partial results in different ways, e.g.
• reduce() creates a new

immutable value

Combining Results in a Parallel Stream

reduce() combines two immutable values (e.g., long or Long) & produces a new one

reduce()
reduce()

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

longs 1..2 longs 3..4 longs 5..6 longs 7..8

longs 1..4 longs 5..8

Range of longs from 1..8

2 12 30 56

24

40,320

reduce() 1,680

11See greenteapress.com/thinkapjava/html/thinkjava011.html

• Different terminal operations combine
partial results in different ways, e.g.
• reduce() creates a new

immutable value
• collect() mutates an

existing value

Combining Results in a Parallel Stream

http://greenteapress.com/thinkapjava/html/thinkjava011.html

12

List<CharSequence>
uniqueWords =

getInput(sSHAKESPEARE),
"\\s+")

.parallelStream()

...

.collect(toCollection(TreeSet::new));

• Different terminal operations combine
partial results in different ways, e.g.
• reduce() creates a new

immutable value
• collect() mutates an

existing value

Combining Results in a Parallel Stream

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

1st quarter of words 2nd quarter of words 3rd quarter of words 4th quarter of words

1st half of words 2nd half of words

All words in Shakespeare’s works

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex14

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex14

13

List<CharSequence>
uniqueWords =

getInput(sSHAKESPEARE),
"\\s+")

.parallelStream()

...

.collect(toCollection(TreeSet::new));

• Different terminal operations combine
partial results in different ways, e.g.
• reduce() creates a new

immutable value
• collect() mutates an

existing value

Combining Results in a Parallel Stream

collect() collect()
collect()

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

collect() mutates a container to accumulate the result it’s producing

1st quarter of words 2nd quarter of words 3rd quarter of words 4th quarter of words

1st half of words 2nd half of words

All words in Shakespeare’s works

14

List<CharSequence>
uniqueWords =

getInput(sSHAKESPEARE),
"\\s+")

.parallelStream()

...

.collect(ConcurrentHashSetCollector.toSet());

• Different terminal operations combine
partial results in different ways, e.g.
• reduce() creates a new

immutable value
• collect() mutates an

existing value

Combining Results in a Parallel Stream

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Concurrent collectors are different than non-concurrent collectors (covered later)

1st quarter of words 2nd quarter of words 3rd quarter of words 4th quarter of words

1st half of words 2nd half of words

All words in Shakespeare’s works

accumulate() accumulate()

accumulate()

Concurrent
Result Container

15

• More discussion about reduce()
vs. collect() appears online

Combining Results in a Parallel Stream

See www.youtube.com/watch?v=oWlWEKNM5Aw

http://www.youtube.com/watch?v=oWlWEKNM5Aw

16

• More discussion about reduce()
vs. collect() appears online, e.g.
• Always test w/a parallel stream

to detect mistakes wrt mutable
vs. immutable reductions

Combining Results in a Parallel Stream
void buggyStreamReduce

(boolean parallel) {
...
Stream<String> wordStream =
allWords.stream();

if (parallel)
wordStream.parallel();

String words = wordStream
.reduce(new StringBuilder(),

StringBuilder::append,
StringBuilder::append)

.toString();

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex17

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex17

17

• More discussion about reduce()
vs. collect() appears online, e.g.
• Always test w/a parallel stream

to detect mistakes wrt mutable
vs. immutable reductions

Combining Results in a Parallel Stream
void buggyStreamReduce

(boolean parallel) {
...
Stream<String> wordStream =
allWords.stream();

if (parallel)
wordStream.parallel();

String words = wordStream
.reduce(new StringBuilder(),

StringBuilder::append,
StringBuilder::append)

.toString();

This code fails when parallel() is
used since reduce() expects to
do an “immutable” reduction

18

• More discussion about reduce()
vs. collect() appears online, e.g.
• Always test w/a parallel stream

to detect mistakes wrt mutable
vs. immutable reductions

Combining Results in a Parallel Stream
void buggyStreamReduce

(boolean parallel) {
...
Stream<String> wordStream =
allWords.stream();

if (parallel)
wordStream.parallel();

String words = wordStream
.reduce(new StringBuilder(),

StringBuilder::append,
StringBuilder::append)

.toString();

There are race conditions here since
there’s just one shared StringBuilder,
which is not properly thread-safe..

19

• More discussion about reduce()
vs. collect() appears online, e.g.
• Always test w/a parallel stream

to detect mistakes wrt mutable
vs. immutable reductions

Combining Results in a Parallel Stream
void buggyStreamReduce

(boolean parallel) {
...
Stream<String> wordStream =
allWords.stream();

if (parallel)
wordStream.parallel();

String words = wordStream
.reduce(new StringBuilder(),

StringBuilder::append,
StringBuilder::append)

.toString();

A stream can be dynamically
switched to “parallel” mode!

20

• More discussion about reduce()
vs. collect() appears online, e.g.
• Always test w/a parallel stream

to detect mistakes wrt mutable
vs. immutable reductions

• Beware of issues related to
association & identity

Combining Results in a Parallel Stream
void testDifferenceReduce(...) {
long difference = LongStream
.rangeClosed(1, 100)
.parallel()
.reduce(0L,

(x, y) -> x - y);
}

void testSum(long identity, ...) {
long sum = LongStream
.rangeClosed(1, 100)
.reduce(identity,
// Could use (x, y) -> x + y

Math::addExact);

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex17

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex17

21

• More discussion about reduce()
vs. collect() appears online, e.g.
• Always test w/a parallel stream

to detect mistakes wrt mutable
vs. immutable reductions

• Beware of issues related to
association & identity

Combining Results in a Parallel Stream
void testDifferenceReduce(...) {
long difference = LongStream
.rangeClosed(1, 100)
.parallel()
.reduce(0L,

(x, y) -> x - y);
}

void testSum(long identity, ...) {
long sum = LongStream
.rangeClosed(1, 100)
.reduce(identity,
// Could use (x, y) -> x + y

Math::addExact);

This code fails for a parallel
stream since subtraction

is not associative

See www.ibm.com/developerworks/library/j-java-streams-2-brian-goetz

http://www.ibm.com/developerworks/library/j-java-streams-2-brian-goetz

22

• More discussion about reduce()
vs. collect() appears online, e.g.
• Always test w/a parallel stream

to detect mistakes wrt mutable
vs. immutable reductions

• Beware of issues related to
association & identity

Combining Results in a Parallel Stream
void testDifferenceReduce(...) {
long difference = LongStream
.rangeClosed(1, 100)
.parallel()
.reduce(0L,

(x, y) -> x - y);
}

void testSum(long identity, ...) {
long sum = LongStream
.rangeClosed(1, 100)
.reduce(identity,
// Could use (x, y) -> x + y

Math::addExact);

This code fails if
identity is not 0L

The “identity” of an OP is defined as “identity OP value == value”

23

Implementing Concurrent &
Non-Concurrent Collectors

24

• Collector defines an interface
whose implementations can
accumulate input elements
in a mutable result container

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

Implementing Concurrent & Non-Concurrent Collectors

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

25

• Collector implementations can either be
non-concurrent or concurrent based
on their characteristics

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.Characteristics.html

Implementing Concurrent & Non-Concurrent Collectors

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.Characteristics.html

26

• Collector implementations can either be
non-concurrent or concurrent based
on their characteristics
• This distinction is only relevant for

parallel streams

See “Overview of Java 8 Streams (Part 4)” for non-concurrent collector implementation

Implementing Concurrent & Non-Concurrent Collectors

filter(not(this::urlCached))

collect(toList())

map(this::downloadImage)

flatMap(this::applyFilters)

…

27

• Collector implementations can either be
non-concurrent or concurrent based
on their characteristics
• This distinction is only relevant for

parallel streams
• A non-concurrent collector can be

used for either a sequential stream
or a parallel stream!

Implementing Concurrent & Non-Concurrent Collectors

We’ll just focus on parallel streams in the subsequent discussion

28

• A non-concurrent collector operates
by merging sub-results

See stackoverflow.com/questions/22350288/parallel-streams-collectors-and-thread-safety

Implementing Concurrent & Non-Concurrent Collectors

https://stackoverflow.com/questions/22350288/parallel-streams-collectors-and-thread-safety

29

• A non-concurrent collector operates
by merging sub-results
• The input source is partitioned

into chunks

Implementing Concurrent & Non-Concurrent Collectors

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputSource1.1 InputSource1.2 InputSource2.1 InputSource2.2

InputSource1 InputSource2

trySplit()

InputSource

trySplit() trySplit()

30

• A non-concurrent collector operates
by merging sub-results
• The input source is partitioned

into chunks
• Each chunk is collected into a

result container
• e.g., a list or a map

Implementing Concurrent & Non-Concurrent Collectors

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputSource1.1 InputSource1.2 InputSource2.1 InputSource2.2

InputSource1 InputSource2

trySplit()

InputSource

trySplit() trySplit()

31

• A non-concurrent collector operates
by merging sub-results
• The input source is partitioned

into chunks
• Each chunk is collected into a

result container
• e.g., a list or a map

Implementing Concurrent & Non-Concurrent Collectors

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputSource1.1 InputSource1.2 InputSource2.1 InputSource2.2

InputSource1 InputSource2

trySplit()

InputSource

trySplit() trySplit()

Different threads operate on different instances of intermediate result containers

32

• A non-concurrent collector operates
by merging sub-results
• The input source is partitioned

into chunks
• Each chunk is collected into a

result container
• These sub-results are then

merged into a final mutable
result container
• Only one thread in the fork-join

pool is used to merge any pair
of intermediate results

Implementing Concurrent & Non-Concurrent Collectors

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputSource1.1 InputSource1.2 InputSource2.1 InputSource2.2

InputSource1 InputSource2

trySplit()

InputSource

trySplit() trySplit()

33

• A non-concurrent collector operates
by merging sub-results
• The input source is partitioned

into chunks
• Each chunk is collected into a

result container
• These sub-results are then

merged into a final mutable
result container
• Only one thread in the fork-join

pool is used to merge any pair
of intermediate results

Implementing Concurrent & Non-Concurrent Collectors

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputSource1.1 InputSource1.2 InputSource2.1 InputSource2.2

InputSource1 InputSource2

trySplit()

InputSource

trySplit() trySplit()

Thus there’s no need for any synchronizers in a non-concurrent collector

34

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

• A non-concurrent collector operates
by merging sub-results
• The input source is partitioned

into chunks
• Each chunk is collected into a

result container
• These sub-results are then

merged into a final mutable
result container

Implementing Concurrent & Non-Concurrent Collectors

join join
join

This process is safe & order-
preserving, but merging is costly
for containers like maps & sets

35

• A concurrent collector creates one
concurrent result container & inserts
elements into it from multiple threads
in a parallel stream

See stackoverflow.com/questions/22350288/parallel-streams-collectors-and-thread-safety

Implementing Concurrent & Non-Concurrent Collectors

https://stackoverflow.com/questions/22350288/parallel-streams-collectors-and-thread-safety

36

• A concurrent collector creates one
concurrent result container & inserts
elements into it from multiple threads
in a parallel stream
• As usual, the input source is

partitioned into chunks
InputSource1.1 InputSource1.2 InputSource2.1 InputSource2.2

InputSource1 InputSource2

trySplit()

InputSource

trySplit() trySplit()

Implementing Concurrent & Non-Concurrent Collectors

37

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

accumulate() accumulate()
accumulate()

• A concurrent collector creates one
concurrent result container & inserts
elements into it from multiple threads
in a parallel stream
• As usual, the input source is

partitioned into chunks
• Each chunk is collected into one

concurrent result container
• e.g., a concurrent map or set

InputSource1.1 InputSource1.2 InputSource2.1 InputSource2.2

InputSource1 InputSource2

trySplit()

InputSource

trySplit() trySplit()

Implementing Concurrent & Non-Concurrent Collectors

Concurrent
Result Container

38

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

accumulate() accumulate()
accumulate()

• A concurrent collector creates one
concurrent result container & inserts
elements into it from multiple threads
in a parallel stream
• As usual, the input source is

partitioned into chunks
• Each chunk is collected into one

concurrent result container
• e.g., a concurrent map or set

InputSource1.1 InputSource1.2 InputSource2.1 InputSource2.2

InputSource1 InputSource2

trySplit()

InputSource

trySplit() trySplit()

Different threads in a parallel stream share one concurrent result container

Implementing Concurrent & Non-Concurrent Collectors

Concurrent
Result Container

39

• A concurrent collector creates one
concurrent result container & inserts
elements into it from multiple threads
in a parallel stream
• As usual, the input source is

partitioned into chunks
• Each chunk is collected into one

concurrent result container

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputSource1.1 InputSource1.2 InputSource2.1 InputSource2.2

InputSource1 InputSource2

trySplit()

InputSource

trySplit() trySplit()

Of course, encounter order is not preserved..

Implementing Concurrent & Non-Concurrent Collectors

Thus there’s no need to merge
any intermediate sub-results!

40

• A concurrent collector may perform
better than a non-concurrent collector
if merging costs are high

Implementing Concurrent & Non-Concurrent Collectors

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex14

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex14

41

• A concurrent collector may perform
better than a non-concurrent collector
if merging costs are high
• e.g., for a highly optimized result

container like ConcurrentHashMap
vs. merging HashMaps

Implementing Concurrent & Non-Concurrent Collectors

See www.quora.com/What-is-the-difference-between-synchronize-and-concurrent-collection-in-Java

http://www.quora.com/What-is-the-difference-between-synchronize-and-concurrent-collection-in-Java

42See www.baeldung.com/java-8-collectors

Implementing Concurrent & Non-Concurrent Collectors
• The Collector interface defines

three generic types

http://www.baeldung.com/java-8-collectors

43

Implementing Concurrent & Non-Concurrent Collectors
• The Collector interface defines

three generic types
• T – The type of objects available

in the stream
• e.g., Integer, String, etc.

44

Implementing Concurrent & Non-Concurrent Collectors
• The Collector interface defines

three generic types
• T
• A – The type of a mutable

accumulator object for collection
• e.g., ConcurrentHashSet or

ArrayList of T

45See www.baeldung.com/java-8-collectors

Implementing Concurrent & Non-Concurrent Collectors
• The Collector interface defines

three generic types
• T
• A
• R – The type of a final result

• e.g., ConcurrentHashSet or
ArrayList of T

http://www.baeldung.com/java-8-collectors

46

• Five methods are defined in the
Collector interface

Implementing Concurrent & Non-Concurrent Collectors

47

• Five methods are defined in the
Collector interface
• characteristics() – provides a

stream with additional information
used for internal optimizations, e.g.
• UNORDERED

• The collector need not preserve
the encounter order

Implementing Concurrent & Non-Concurrent Collectors

A concurrent collector should be UNORDERED, but a non-concurrent collector can be ORDERED

48

• Five methods are defined in the
Collector interface
• characteristics() – provides a

stream with additional information
used for internal optimizations, e.g.
• UNORDERED
• IDENTIFY_FINISH

• The finisher() is the identity
function so it can be a no-op
• e.g. finisher() just returns null

Implementing Concurrent & Non-Concurrent Collectors

A concurrent collector should be IDENTITY_FINISH, whereas a non-concurrent collector could be

49

• Five methods are defined in the
Collector interface
• characteristics() – provides a

stream with additional information
used for internal optimizations, e.g.
• UNORDERED
• IDENTIFY_FINISH
• CONCURRENT

• The accumulator() method is called concurrently on the result
container
• Naturally, the mutable result container must be synchronized!!

Implementing Concurrent & Non-Concurrent Collectors

A concurrent collector should be CONCURRENT, but a non-concurrent collector should not be!

50

• Five methods are defined in the
Collector interface
• characteristics() – provides a

stream with additional information
used for internal optimizations, e.g.
• UNORDERED
• IDENTIFY_FINISH
• CONCURRENT

• The accumulator() method is called concurrently on the result
container

• The combiner() method is a no-op since it’s not called at all

Implementing Concurrent & Non-Concurrent Collectors

51

• Five methods are defined in the
Collector interface
• characteristics() – provides a

stream with additional information
used for internal optimizations, e.g.
• UNORDERED
• IDENTIFY_FINISH
• CONCURRENT

Implementing Concurrent & Non-Concurrent Collectors

A non-concurrent collector can be used with either sequential or parallel streams

52

• Five methods are defined in the
Collector interface
• characteristics() – provides a

stream with additional information
used for internal optimizations, e.g.
• UNORDERED
• IDENTIFY_FINISH
• CONCURRENT

Implementing Concurrent & Non-Concurrent Collectors

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex14

return Collections.unmodifiableSet
(EnumSet.of(Collector.Characteristics.CONCURRENT,
Collector.Characteristics.UNORDERED,
Collector.Characteristics.IDENTITY_FINISH));

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex14

53

• Five methods are defined in the
Collector interface
• characteristics()
• supplier() – returns a supplier

instance that generates an empty
result container

Implementing Concurrent & Non-Concurrent Collectors

54

• Five methods are defined in the
Collector interface
• characteristics()
• supplier() – returns a supplier

instance that generates an empty
result container, e.g.
• return ArrayList::new

Implementing Concurrent & Non-Concurrent Collectors

A non-concurrent collector has a different result container for each thread in a parallel stream

55

• Five methods are defined in the
Collector interface
• characteristics()
• supplier() – returns a supplier

instance that generates an empty
result container, e.g.
• return ArrayList::new

• return ConcurrentHashSet::new

Implementing Concurrent & Non-Concurrent Collectors

A concurrent collector has one result container shared by each thread in a parallel stream

56

• Five methods are defined in the
Collector interface
• characteristics()
• supplier()
• accumulator() – returns a

biconsumer that adds a new
element to result container

Implementing Concurrent & Non-Concurrent Collectors

57

• Five methods are defined in the
Collector interface
• characteristics()
• supplier()
• accumulator() – returns a

biconsumer that adds a new
element to result container, e.g.
• return ArrayList::add

Implementing Concurrent & Non-Concurrent Collectors

A non-concurrent collector’s methods should not be synchronized!

58

• Five methods are defined in the
Collector interface
• characteristics()
• supplier()
• accumulator() – returns a

biconsumer that adds a new
element to result container, e.g.
• return ArrayList::add

• return ConcurrentHashSet::add

Implementing Concurrent & Non-Concurrent Collectors

A concurrent collector’s methods must be synchronized!

59

• Five methods are defined in the
Collector interface
• characteristics()
• supplier()
• accumulator()
• combiner() – returns a function

that merges two result containers
together

Implementing Concurrent & Non-Concurrent Collectors

60

• Five methods are defined in the
Collector interface
• characteristics()
• supplier()
• accumulator()
• combiner() – returns a function

that merges two result containers
together, e.g.
• return (one, another) -> {

one.addAll(another); return one;
}

Implementing Concurrent & Non-Concurrent Collectors

61

• Five methods are defined in the
Collector interface
• characteristics()
• supplier()
• accumulator()
• combiner() – returns a function

that merges two result containers
together, e.g.
• return (one, another) -> {

one.addAll(another); return one;
}

• return null

Implementing Concurrent & Non-Concurrent Collectors

The combiner() method is not called when CONCURRENT is set

62

• Five methods are defined in the
Collector interface
• characteristics()
• supplier()
• accumulator()
• combiner()
• finisher() – returns a function

that converts the result container
to final result type

Implementing Concurrent & Non-Concurrent Collectors

63

• Five methods are defined in the
Collector interface
• characteristics()
• supplier()
• accumulator()
• combiner()
• finisher() – returns a function

that converts the result container
to final result type, e.g.
• Function.identity() or something much more interesting!

Implementing Concurrent & Non-Concurrent Collectors

64

• Five methods are defined in the
Collector interface
• characteristics()
• supplier()
• accumulator()
• combiner()
• finisher() – returns a function

that converts the result container
to final result type, e.g.
• Function.identity()

• return null

Implementing Concurrent & Non-Concurrent Collectors

The finisher() method is not called when IDENTITY_FINISHER is set

65

End of Java 8 Parallel
Stream Internals (Part 5)

	Slide Number 1
	Learning Objectives in this Part of the Lesson
	Combining Results �in a Parallel Stream
	Combining Results in a Parallel Stream
	Combining Results in a Parallel Stream
	Combining Results in a Parallel Stream
	Combining Results in a Parallel Stream
	Combining Results in a Parallel Stream
	Combining Results in a Parallel Stream
	Combining Results in a Parallel Stream
	Combining Results in a Parallel Stream
	Combining Results in a Parallel Stream
	Combining Results in a Parallel Stream
	Combining Results in a Parallel Stream
	Combining Results in a Parallel Stream
	Combining Results in a Parallel Stream
	Combining Results in a Parallel Stream
	Combining Results in a Parallel Stream
	Combining Results in a Parallel Stream
	Combining Results in a Parallel Stream
	Combining Results in a Parallel Stream
	Combining Results in a Parallel Stream
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	Implementing Concurrent & Non-Concurrent Collectors
	End of Java 8 Parallel Stream Internals (Part 5)

