
Java 8 Parallel Stream Internals
(Part 3)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software 
Integrated Systems

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

• Understand parallel stream internals, e.g.
• Know what can change & what can’t
• Partition a parallel stream data 

source into “chunks”
• Process chunks in parallel

Learning Objectives in this Part of the Lesson

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

trySplit()

InputString

trySplit() trySplit()

See www.ibm.com/developerworks/library/j-java-streams-3-brian-goetz

http://www.ibm.com/developerworks/library/j-java-streams-3-brian-goetz


3

Processing Chunks 
in a Parallel Stream



4

• The chunks created by a spliterator are 
processed in a common fork-join pool Common Fork-Join Pool

See gee.cs.oswego.edu/dl/papers/fj.pdf

Processing Chunks in a Parallel Stream

http://gee.cs.oswego.edu/dl/papers/fj.pdf


5

• The chunks created by a spliterator are 
processed in a common fork-join pool
• All parallel streams in a process share

this common fork-join pool by default

Common Fork-Join Pool

See gee.cs.oswego.edu/dl/papers/fj.pdf

Processing Chunks in a Parallel Stream

http://gee.cs.oswego.edu/dl/papers/fj.pdf


6See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html

• ForkJoinPool is an Executor Service implementation that runs ForkJoinTasks
Processing Chunks in a Parallel Stream

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html


7

• ForkJoinPool is an Executor Service implementation that runs ForkJoinTasks
• It provides the entry point 

for submissions from non-
ForkJoinTask clients

Processing Chunks in a Parallel Stream

void execute(ForkJoinTask<T>) – Arrange 
async execution

T invoke(ForkJoinTask<T>) – Performs 
the given task, returning its result 
upon completion

ForkJoinTask
<T>

submit(ForkJoinTask) – Submits a 
ForkJoinTask for execution, returns a 
future

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#execute-java.util.concurrent.ForkJoinTask-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#invoke-java.util.concurrent.ForkJoinTask-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#submit-java.util.concurrent.ForkJoinTask-


8These methods are not used by the Java 8 parallel streams framework

• ForkJoinPool is an Executor Service implementation that runs ForkJoinTasks
• It provides the entry point 

for submissions from non-
ForkJoinTask clients

Processing Chunks in a Parallel Stream

void execute(ForkJoinTask<T>) – Arrange 
async execution

T invoke(ForkJoinTask<T>) – Performs 
the given task, returning its result 
upon completion

ForkJoinTask
<T>

submit(ForkJoinTask) – Submits a 
ForkJoinTask for execution, returns a 
future

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#execute-java.util.concurrent.ForkJoinTask-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#invoke-java.util.concurrent.ForkJoinTask-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#submit-java.util.concurrent.ForkJoinTask-


9See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html

• ForkJoinPool is an Executor Service implementation that runs ForkJoinTasks
• It provides the entry point 

for submissions from non-
ForkJoinTask clients

• It also provides management 
& monitoring operations

Processing Chunks in a Parallel Stream

int getParallelism() – Returns the targeted 
parallelism level of this pool

int getPoolSize() – Returns the number of 
worker threads that have started but not 
yet terminated

int getQueuedSubmissionCount() – Returns an 
estimate of the number of tasks submitted 
to this pool that have not yet begun 
executing

long getStealCount() – Returns an estimate of 
the total number of tasks stolen from one 
thread's work queue by another

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#getParallelism--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#getPoolSize--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#getQueuedSubmissionCount--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#getStealCount--


10The Java 8 parallel streams framework uses getParallelism() indirectly..

• ForkJoinPool is an Executor Service implementation that runs ForkJoinTasks
• It provides the entry point 

for submissions from non-
ForkJoinTask clients

• It also provides management 
& monitoring operations

Processing Chunks in a Parallel Stream

int getParallelism() – Returns the targeted 
parallelism level of this pool

int getPoolSize() – Returns the number of 
worker threads that have started but not 
yet terminated

int getQueuedSubmissionCount() – Returns an 
estimate of the number of tasks submitted 
to this pool that have not yet begun 
executing

long getStealCount() – Returns an estimate of 
the total number of tasks stolen from one 
thread's work queue by another

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#getPoolSize--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#getQueuedSubmissionCount--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#getStealCount--


11

• A ForkJoinTask is a chunk of data along with functionality on that data
Processing Chunks in a Parallel Stream

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html


12

• A ForkJoinTask is a chunk of data along with functionality on that data
• It defines two primary

methods

Processing Chunks in a Parallel Stream

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html

ForkJoinTask
<T>

fork() – Arranges to asynchronously 
execute this task in the appropriate pool

V join() – Returns the result of the 
computation when it is done

V invoke() – Commences performing this 
task, awaits its completion if necessary, 
and returns its result

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#submit-java.util.concurrent.ForkJoinTask-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#submit-java.util.concurrent.ForkJoinTask-


13

• A ForkJoinTask is a chunk of data along with functionality on that data
• It defines two primary

methods
• The Java 8 parallel 

streams framework
calls fork()/join() via
CountedCompleter

Processing Chunks in a Parallel Stream

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CountedCompleter.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CountedCompleter.html


14

• A ForkJoinTask is a chunk of data along with functionality on that data
• It defines two primary

methods
• invoke() is essentially

fork(); join();

Processing Chunks in a Parallel Stream

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html

ForkJoinTask
<T>

fork() – Arranges to asynchronously 
execute this task in the appropriate pool

V join() – Returns the result of the 
computation when it is done

V invoke() – Commences performing this 
task, awaits its completion if necessary, 
and returns its result

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#submit-java.util.concurrent.ForkJoinTask-


15

• A ForkJoinTask is a chunk of data along with functionality on that data
• It defines two primary

methods
• invoke() is essentially

fork(); join();
• A ForkJoinTask is lighter 

weight than a Java thread

Processing Chunks in a Parallel Stream

Thread

ForkJoinTask

e.g., it doesn’t maintain its own run-time stack



16

• A ForkJoinTask is a chunk of data along with functionality on that data
• It defines two primary

methods
• invoke() is essentially

fork(); join();
• A ForkJoinTask is lighter 

weight than a Java thread
• A large # of ForkJoinTasks

thus run in a small # of Java 
threads in a ForkJoinPool

Processing Chunks in a Parallel Stream

ForkJoinTasks

See www.infoq.com/interviews/doug-lea-fork-join

http://www.infoq.com/interviews/doug-lea-fork-join


17

• A circular dequeue is associated 
with each ForkJoinPool thread Sub-Task1.1

Sub-Task1.2

Sub-Task1.3 Sub-Task3.3

Sub-Task3.4

Dequeue Dequeue Dequeue

Processing Chunks in a Parallel Stream

See en.wikipedia.org/wiki/Double-ended_queue

Sub-Task1.4

https://en.wikipedia.org/wiki/Double-ended_queue


18

• A circular dequeue is associated 
with each ForkJoinPool thread
• fork() pushes a new task to 

the head of its dequeue

Sub-Task1.1

Sub-Task1.2

Sub-Task1.3 Sub-Task3.3

Sub-Task3.4Sub-Task2.4

Dequeue Dequeue Dequeue

Processing Chunks in a Parallel Stream

Sub-Task1.4

See gee.cs.oswego.edu/dl/papers/fj.pdf

http://gee.cs.oswego.edu/dl/papers/fj.pdf


19

• A circular dequeue is associated 
with each ForkJoinPool thread
• fork() pushes a new task to 

the head of its dequeue
• Likewise, a thread pops the

next task its processes from 
the head of its dequeue

Sub-Task1.1

Sub-Task1.2

Sub-Task1.3 Sub-Task3.3

Sub-Task3.4

Sub-Task2.4

Dequeue Dequeue Dequeue

Processing Chunks in a Parallel Stream

Sub-Task1.4



20

• A circular dequeue is associated 
with each ForkJoinPool thread
• fork() pushes a new task to 

the head of its dequeue
• Likewise, a thread pops the

next task its processes from 
the head of its dequeue

Sub-Task1.1

Sub-Task1.2

Sub-Task1.3 Sub-Task3.3

Sub-Task3.4

Sub-Task2.4

Dequeue Dequeue Dequeue

Processing Chunks in a Parallel Stream

Sub-Task1.4

“FIFO” pop/push enhances locality of reference & improves cache performance



21

• A circular dequeue is associated 
with each ForkJoinPool thread
• fork() pushes a new task to 

the head of its dequeue
• Likewise, a thread pops the

next task its processes from 
the head of its dequeue

• An idle thread “steals” work 
from the tail of a busy thread 
to maximize core utilitization

See docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

Processing Chunks in a Parallel Stream

Sub-Task1.2

Sub-Task1.3

Sub-Task1.4

Sub-Task1.1

Sub-Task3.3

Sub-Task3.4

Dequeue Dequeue Dequeue

http://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html


22

Processing Chunks in a Parallel Stream

See www.dre.vanderbilt.edu/~schmidt/PDF/work-stealing-dequeue.pdf

Sub-Task1.2

Sub-Task1.3

Sub-Task1.4

Sub-Task1.1

Sub-Task3.3

Sub-Task3.4

Dequeue Dequeue Dequeue• A circular dequeue is associated 
with each ForkJoinPool thread
• fork() pushes a new task to 

the head of its dequeue
• Likewise, a thread pops the

next task its processes from 
the head of its dequeue

• An idle thread “steals” work 
from the tail of a busy thread 
to maximize core utilitization
• The circular dequeue used for 

work-stealing lowers contention

http://www.dre.vanderbilt.edu/%7Eschmidt/PDF/work-stealing-dequeue.pdf


23

Sub-Task1.1

• Parallel streams is a “user 
friendly” ForkJoinPool façade

See espressoprogrammer.com/fork-join-vs-parallel-stream-java-8

Processing Chunks in a Parallel Stream

Sub-Task1.2

Sub-Task1.3

Sub-Task1.4

Sub-Task3.3

Sub-Task3.4

Dequeue Dequeue Dequeue

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

collect(toList())

45,000+ phrases

Search Phrases

http://espressoprogrammer.com/fork-join-vs-parallel-stream-java-8/


24

• Parallel streams is a “user 
friendly” ForkJoinPool façade
• You can program directly to 

the ForkJoinPool API, though 
it can be somewhat painful!

List<List<SearchResults>> 
listOfListOfSearchResults =
ForkJoinPool.commonPool()
.invoke(new 

SearchWithForkJoinTask
(inputList, 
mPhrasesToFind, ...));

Processing Chunks in a Parallel Stream



25

• Parallel streams is a “user 
friendly” ForkJoinPool façade
• You can program directly to 

the ForkJoinPool API, though 
it can be somewhat painful!

See github.com/douglascraigschmidt/LiveLessons/tree/master/SearchStreamForkJoin

Use the common fork-join 
pool to search input strings 

for phrases that match

45,000+ phrases

Search Phrases

Input Strings to Search

…

Processing Chunks in a Parallel Stream
List<List<SearchResults>> 

listOfListOfSearchResults =
ForkJoinPool.commonPool()
.invoke(new 

SearchWithForkJoinTask
(inputList, 
mPhrasesToFind, ...));

https://github.com/douglascraigschmidt/LiveLessons/tree/master/PalantiriManagerApplication


26

• Parallel streams is a “user 
friendly” ForkJoinPool façade
• You can program directly to 

the ForkJoinPool API, though 
it can be somewhat painful!
• Used for algorithms that 

don’t match Java 8’s parallel 
streams programming model

See www.oracle.com/technetwork/articles/java/fork-join-422606.html

Long compute() { 
long count = 0L; 
List<RecursiveTask<Long>> forks = 

new LinkedList<>(); 
for (Folder sub : mFolder.getSubs()){

FolderSearchTask task = new 
FolderSearchTask(sub, mWord); 

forks.add(task); task.fork(); 
} 
for (Doc doc : mFolder.getDocs()) {

DocSearchTask task = 
new DocSearchTask(doc, mWord); 

forks.add(task); task.fork(); 
} 
for (RecursiveTask<Long> task : forks) 

count = count + task.join();
return count; 

} 

Processing Chunks in a Parallel Stream

http://www.oracle.com/technetwork/articles/java/fork-join-422606.html


27

End of Java 8 Parallel 
Stream Internals (Part 3)


	Slide Number 1
	Learning Objectives in this Part of the Lesson
	Processing Chunks �in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	End of Java 8 Parallel Stream Internals (Part 3)

