Java 8 Parallel Stream Internals

(Part 3)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
‘ ;7 Integrated Systems
Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives In this Part of the Lesson
e Understand parallel stream internals, e.g.

e Process chunks in parallel

InputString;, , InputString;, , InputString, , InputString, ,
I I I I
Process Process Process Process
sequentially sequentially sequentially sequentially
A J

See www.ibm.com/developerworks/library/j-java-streams-3-brian-goetz

http://www.ibm.com/developerworks/library/j-java-streams-3-brian-goetz

Processing Chunks
In a Parallel Stream

Processing Chunks in a Parallel Stream

* The chunks created by a spliterator are

: . . Common Fork-Join Pool
processed in a common fork-join pool

Deque Deque Deque
Sub-Task,
Sub-Task, 3 Sub-Task; 4
Sub-Tasky 4 ™ Sub-Task; 4

See gee.cs.osweqgo.edu/dl/papers/fi.pdf

http://gee.cs.oswego.edu/dl/papers/fj.pdf

Processing Chunks in a Parallel Stream

* The chunks created by a spliterator are

: . . Common Fork-Join Pool
processed in a common fork-join pool

« All parallel streams in a process share Dedue Beque Deque
this common fork-join pool by default E—
Sub-Task, 3 Sub-Task; 4
Sub-Task, , f=esfa] W Sub-Task, ,

See gee.cs.osweqgo.edu/dl/papers/fi.pdf

http://gee.cs.oswego.edu/dl/papers/fj.pdf

Processing Chunks in a Parallel Stream

» ForkJoinPool is an Executor Service implementation that runs ForkJoinTasks

Class ForkJoinPool

java.lang.Object
java.util.concurrent.AbstractExecutorService
java.util.concurrent.ForkjoinPool

All Implemented Interfaces:

Executor, ExecutorService

public class ForkJoinPool
extends AbstractExecutorService

An ExecutorService for running ForkJoinTasks. A ForkJoinPool provides the entry point for
submissions from non-ForkJoinTask clients, as well as management and monitoring operations.

A ForkJoinPool differs from other kinds of ExecutorService mainly by virtue of employing
work-stealing: all threads in the pool attempt to find and execute tasks submitted to the pool
and/or created by other active tasks (eventually blocking waiting for work if none exist). This
enables efficient processing when most tasks spawn other subtasks (as do most
ForkJoinTasks), as well as when many small tasks are submitted to the pool from external
clients. Especially when setting asyncMode to true in constructors, ForkJoinPools may also be
appropriate for use with event-style tasks that are never joined.

A static commonPool () is available and appropriate for most applications. The common pool is
used by any ForkJoinTask that is not explicitly submitted to a specified pool. Using the common
pool normally reduces resource usage (its threads are slowly reclaimed during periods of non-
use, and reinstated upon subsequent use).

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html

Processing Chunks in a Parallel Stream

» ForkJoinPool is an Executor Service implementation that runs ForkJoinTasks

It provides the entry point void execute(ForkJoinTask<T>) — Arrange
for submissions from non- async execution
ForkJoinTask clients T invoke(ForkJoinTask<T>) — Performs

the given task, returning its result
upon completion

ForkJoinTask submit(ForkJoinTask) — Submits a
<T> ForkJoinTask for execution, returns a
future

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#execute-java.util.concurrent.ForkJoinTask-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#invoke-java.util.concurrent.ForkJoinTask-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#submit-java.util.concurrent.ForkJoinTask-

Processing Chunks in a Parallel Stream

» ForkJoinPool is an Executor Service implementation that runs ForkJoinTasks

It provides the entry point void frte (ForkJol
for submissions from non- execution

<T>) — Arrange

ForkJoinTask clients T) — Performs
its result
ForkJoinTasRes ‘ hbubmits a

<T> . lon, returns a

These methods are not used by the Java 8 parallel streams framework

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#execute-java.util.concurrent.ForkJoinTask-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#invoke-java.util.concurrent.ForkJoinTask-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#submit-java.util.concurrent.ForkJoinTask-

Processing Chunks in a Parallel Stream

» ForkJoinPool is an Executor Service implementation that runs ForkJoinTasks

int getParallelism() — Returns the targeted
parallelism level of this pool

Int getPoolSize() — Returns the number of
worker threads that have started but not
yet terminated

int getQueuedSubmissionCount() — Returns an
estimate of the number of tasks submitted
to this pool that have not yet begun
executing

long getStealCount() — Returns an estimate of
the total number of tasks stolen from one
thread's work queue by another

It also provides management
& monitoring operations

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#getParallelism--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#getPoolSize--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#getQueuedSubmissionCount--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#getStealCount--

Processing Chunks in a Parallel Stream

» ForkJoinPool is an Executor Service implementation that runs ForkJoinTasks

It also provides management
& monitoring operations

int

int

int

long

getParallelism() — Returns the targeted
parallelism level of this pool

getPoolSize() — Returns the number of
worker threads that have started but not
yet terminated

getQueuedSubmissionCount() — Returns an
estimate of the number of tasks submitted
to this pool that have not yet begun
executing

getStealCount() — Returns an estimate of
the total number of tasks stolen from one
thread's work queue by another

The Java 8 parallel streams framework uses getParallelism() indirectly..

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#getPoolSize--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#getQueuedSubmissionCount--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#getStealCount--

Processing Chunks in a Parallel Stream

» A ForkJoinTask is a chunk of data along with functionality on that data

Class ForkjoinTask<V>

java.lang.Object
java.util.concurrent.ForkjoinTask<V=>

All Implemented Interfaces:

Serializable, Future<Vs>

Direct Known Subclasses:

CountedCompleter, RecursiveAction, RecursiveTask

public abstract class ForkJoinTask<V>
extends Object
implements Future<V>, Serializable

Abstract base class for tasks that run within a ForkJoinPool. A ForkJoinTask is a thread-like
entity that is much lighter weight than a normal thread. Huge numbers of tasks and subtasks
may be hosted by a small number of actual threads in a ForkJoinPool, at the price of some usage
limitations.

A "main" ForkJoinTask begins execution when it is explicitly submitted to a ForkJoinPool, or,
if not already engaged in a ForkJoin computation, commenced in the
ForkJoinPool.commonPool() via fork(), invoke(), or related methods. Once started, it will
usually in turn start other subtasks. As indicated by the name of this class, many programs
using ForkJoinTask employ only methods fork() and join(), or derivatives such as
invokeAll. However, this class also provides a number of other methods that can come into
play in advanced usages, as well as extension mechanics that allow support of new forms of
fork/join processing.

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html

Processing Chunks in a Parallel Stream
» A ForkJoinTask is a chunk of data along with functionality on that data
It defines two primary ForkJoinTask fork() — Arranges to asynchronously

methods <T> execute this task in the appropriate pool
V join() — Returns the result of the
computation when it is done
iInvoke()

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#submit-java.util.concurrent.ForkJoinTask-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#submit-java.util.concurrent.ForkJoinTask-

Processing Chunks in a Parallel Stream
» A ForkJoinTask is a chunk of data along with functionality on that data

i It defineS tWO primary Class CountedCompleter<T>
methOdS java.lang.Object

java.util.concurrent.ForkjoinTask<T=>
java.util.concurrent.CountedCompleter<T=>

hd The Java 8 paral Iel All Implemented Interfaces:
StreamS framework Serializable, Future<T>
Ca”S fork()/j0|n() Vla public abstract class CountedCompleter<T>

extends ForkJoinTask<T=>

Cou ntedCO m p I ete r A ForkJoinTask with a completion action performed when triggered and there are no remaining pending actions.

CountedCompleters are in general more robust in the presence of subtask stalls and blockage than are other forms of
ForkJoinTasks, but are less intuitive to program. Uses of CountedCompleter are similar to those of other completion
based components (such as CompletionHandler) except that multiple pending completions may be necessary to trigger
the completion action onCompletion({CountedCompleter), not just one. Unless initialized otherwise, the pending count
starts at zero, but may be (atomically) changed using methods setPendingCount(int), addToPendingCount(int), and
compareAndSetPendingCount(int, int). Upon invocation of tryComplete(), if the pending action count is nonzero, it is
decremented; otherwise, the completion action is performed, and if this completer itself has a completer, the process is
continued with its completer. As is the case with related synchronization components such as Phaser and Semaphore,
these methods affect only internal counts; they do not establish any further internal bookkeeping. In particular, the
identities of pending tasks are not maintained. As illustrated below, you can create subclasses that do record some or all
pending tasks or their results when needed. As illustrated below, utility methods supporting customization of completion
traversals are also provided. However, because CountedCompleters provide only basic synchronization mechanisms, it
may be useful to create further abstract subclasses that maintain linkages, fields, and additional support methods
appropriate for a set of related usages.

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CountedCompleter. html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CountedCompleter.html

Processing Chunks in a Parallel Stream
» A ForkJoinTask is a chunk of data along with functionality on that data
ForkJoinTask fork()

« invoke() is essentially Jjoin()
fork(); join();
Vv invoke() — Commences performing this
task, awaits its completion if necessary,
and returns its result

‘ See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html |

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#submit-java.util.concurrent.ForkJoinTask-

Processing Chunks in a Parallel Stream

» A ForkJoinTask is a chunk of data along with functionality on that data

» A ForkJoinTask is lighter
weight than a Java thread

ForkJoinTask

Thread

e.g., it doesn’t maintain its own run-time stack

Processing Chunks in a Parallel Stream

» A ForkJoinTask is a chunk of data along with functionality on that data

> g ForkJoinTasks < £ <

=5 < -$ _‘ =<
s g f g
£ 5 F

» A large # of ForkJoinTasks
thus run in a small # of Java
threads in a ForkJoinPool

\\\\

\

S
_4 Pool of worker threa"j__, '
\M_._ __45!"'/‘.

See www.infog.com/interviews/doug-lea-fork-join

http://www.infoq.com/interviews/doug-lea-fork-join

Processing Chunks in a Parallel Stream

» A circular dequeue is associated Dequeue Dequeue
with each ForkJoinPool thread

Sub-Task; ;

Sub-Task, ,

Sub-Task, ,

Dequeue

Sub-Task; ,

See en.wikipedia.org/wiki/Double-ended queue

https://en.wikipedia.org/wiki/Double-ended_queue

Processing Chunks in a Parallel Stream

» A circular dequeue is associated Dequeue Dequeue Dequeue

with each ForkJoinPool thread Sub-Task, ,
« fork() pushe_s a new task to Sub-Task, ,
the head of its dequeue
Sub-Task; 5 Sub-Task; 5
Sub-Task, , Sub-Task, , Sub-Task; ,

See gee.cs.osweqo.edu/dl/papers/f].pdf

http://gee.cs.oswego.edu/dl/papers/fj.pdf

Processing Chunks in a Parallel Stream

» A circular dequeue is associated Dequeue Dequeue Dequeue

with each ForkJoinPool thread Sub-Task, ;
Sub-Task; ,
: : Sub-Task Sub-Task
» Likewise, a thread pops the L 3.3
next task its processes from Sub-Task, 4 Sub-Task, ,

the head of its dequeue

Processing Chunks in a Parallel Stream

» A circular dequeue is associated Dequeue Dequeue Dequeue
with each ForkJoinPool thread

Sub-Task, ,
Sub-Task, ,
: : Sub-Task Sub-Task
* Likewise, a thread pops the - 33
next task its processes from Sub-Task, 4 | Sub-Tasks,,

the head of its dequeue

S
- Pool of worker threa®

“FIFO” pop/push enhances locality of reference & improves cache performance

Processing Chunks in a Parallel Stream

» A circular dequeue is associated Dequeue Deaueue Dequeue
with each ForkJoinPool thread =

Sub-Task, ,

Sub-Task, , | Sub-Tasks 4

 An idle thread “steals” work
from the tail of a busy thread
to maximize core utilitization

See docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

http://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

Processing Chunks in a Parallel Stream

» A circular dequeue is associated Dequeue Dequeue Dequeue

with each ForkJoinPool thread __\
Sub-Task, ,
Sub-Task; 5 Sub-Task; 5
Sub-Task, , Sub-Task; ,

* An idle thread “steals” work
from the tail of a busy thread
to maximize core utilitization

» The circular dequeue used for A Po ca
work-stealing lowers contention ol of worker thre<

See www.dre.vanderbilt.edu/—schmidt/PDF/work-stealing-dequeue.pdf

http://www.dre.vanderbilt.edu/%7Eschmidt/PDF/work-stealing-dequeue.pdf

Processing Chunks in a Parallel Stream

o Parallel streams is a “user Dequeue Dequeue Dequeue

friendly” ForkJoinPool facade Sub-Task, ,
Search Phrases Sub-Task, ,

Sub-Task; 5 Sub-Task; 5

Sub-Task, , - Sub-Task; ,

filter(not(SearchResults::isEmpty))

<> |

collect(toList())

See espressoprogrammer.com/fork-join-vs-parallel-stream-java-8

http://espressoprogrammer.com/fork-join-vs-parallel-stream-java-8/

Processing Chunks in a Parallel Stream

 Parallel streams is a “user List<List<SearchResults>>
friendly” ForkJoinPool fagade listOfListOfSearchResults =
_ ForkJoinPool .commonPool ()
e You can program directly to _invoke (new
the ForkJoinPool API, though SearchWithForkJoinTask
it can be somewhat painful! (InputList,

mPhrasesToFind, ...));

J GIWE Y[II‘I‘THE CHANCE [IF.AIIIING MEWILLINGLY

=y o«
BUT YOU HAVE ELECTED THE WAY OF PAIN.

Processing Chunks in a Parallel Stream

 Parallel streams is a “user List<List<SearchResults>>
friendly” ForkJoinPool fagade l1stofListOTSearchResults =
_ ForkJoinPool .commonPool ()
* You can program directly to _invoke(new
the ForkJoinPool API, though SearchWithForkJoinTask
it can be somewhat painful! (inputlList,
mPhrasesToFind, ...));
Use the common f0/’k-j0/'/7 Input Strings to Search
pool to search input strings
for phrases that match ‘. . . .

Search Phrases

See qgithub.com/douglascraigschmidt/LivelLessons/tree/master/SearchStreamForkJoin

https://github.com/douglascraigschmidt/LiveLessons/tree/master/PalantiriManagerApplication

Processing Chunks in a Parallel Stream

e Parallel streams is a “user
friendly” ForkJoinPool facade

You can program directly to
the ForkJoinPool API, though
It can be somewhat painful!

» Used for algorithms that
don’t match Java 8’s parallel
streams programming model

: '

s

>

=

=

~

-

Long compute() {

}

flong count = OL;
List<RecursiveTask<Long>> forks =
new LinkedList<>();
for (Folder sub : mFolder.getSubs()){
FolderSearchTask task = new
FolderSearchTask(sub, mWord);
forks.add(task); task.fork(Q);

for (Doc doc : mFolder.getDocs()) {

DocSearchTask task =
new DocSearchTask(doc, mWord);

forks.add(task); task.fork(Q);

+

for (RecursiveTask<Long> task : forks)
count = count + task.join();

return count;

‘ See www.oracle.com/technetwork/articles/java/fork-join-422606.html |

http://www.oracle.com/technetwork/articles/java/fork-join-422606.html

End of Java 8 Parallel
Stream Internals (Part 3)

27

	Slide Number 1
	Learning Objectives in this Part of the Lesson
	Processing Chunks �in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	Processing Chunks in a Parallel Stream
	End of Java 8 Parallel Stream Internals (Part 3)

