
Java 8 Parallel Stream Internals
(Part 3)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software 
Integrated Systems

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

• Understand parallel stream internals, e.g.
• Know what can change & what can’t
• Partition a parallel stream data 

source into “chunks”
• Process chunks in parallel

Learning Objectives in this Part of the Lesson
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See www.ibm.com/developerworks/library/j-java-streams-3-brian-goetz

http://www.ibm.com/developerworks/library/j-java-streams-3-brian-goetz
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Processing Chunks 
in a Parallel Stream
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• The chunks created by a spliterator are 
processed in a common fork-join pool Common Fork-Join Pool

See gee.cs.oswego.edu/dl/papers/fj.pdf

Processing Chunks in a Parallel Stream

http://gee.cs.oswego.edu/dl/papers/fj.pdf
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• The chunks created by a spliterator are 
processed in a common fork-join pool
• All parallel streams in a process share

this common fork-join pool by default

Common Fork-Join Pool

See gee.cs.oswego.edu/dl/papers/fj.pdf

Processing Chunks in a Parallel Stream

http://gee.cs.oswego.edu/dl/papers/fj.pdf


6See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html

• ForkJoinPool is an Executor Service implementation that runs ForkJoinTasks
Processing Chunks in a Parallel Stream

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html
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• ForkJoinPool is an Executor Service implementation that runs ForkJoinTasks
• It provides the entry point 

for submissions from non-
ForkJoinTask clients

Processing Chunks in a Parallel Stream

void execute(ForkJoinTask<T>) – Arrange 
async execution

T invoke(ForkJoinTask<T>) – Performs 
the given task, returning its result 
upon completion

ForkJoinTask
<T>

submit(ForkJoinTask) – Submits a 
ForkJoinTask for execution, returns a 
future

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#execute-java.util.concurrent.ForkJoinTask-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#invoke-java.util.concurrent.ForkJoinTask-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#submit-java.util.concurrent.ForkJoinTask-


8These methods are not used by the Java 8 parallel streams framework

• ForkJoinPool is an Executor Service implementation that runs ForkJoinTasks
• It provides the entry point 

for submissions from non-
ForkJoinTask clients

Processing Chunks in a Parallel Stream

void execute(ForkJoinTask<T>) – Arrange 
async execution

T invoke(ForkJoinTask<T>) – Performs 
the given task, returning its result 
upon completion

ForkJoinTask
<T>

submit(ForkJoinTask) – Submits a 
ForkJoinTask for execution, returns a 
future

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#execute-java.util.concurrent.ForkJoinTask-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#invoke-java.util.concurrent.ForkJoinTask-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#submit-java.util.concurrent.ForkJoinTask-


9See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html

• ForkJoinPool is an Executor Service implementation that runs ForkJoinTasks
• It provides the entry point 

for submissions from non-
ForkJoinTask clients

• It also provides management 
& monitoring operations

Processing Chunks in a Parallel Stream

int getParallelism() – Returns the targeted 
parallelism level of this pool

int getPoolSize() – Returns the number of 
worker threads that have started but not 
yet terminated

int getQueuedSubmissionCount() – Returns an 
estimate of the number of tasks submitted 
to this pool that have not yet begun 
executing

long getStealCount() – Returns an estimate of 
the total number of tasks stolen from one 
thread's work queue by another

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#getParallelism--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#getPoolSize--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#getQueuedSubmissionCount--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#getStealCount--


10The Java 8 parallel streams framework uses getParallelism() indirectly..

• ForkJoinPool is an Executor Service implementation that runs ForkJoinTasks
• It provides the entry point 

for submissions from non-
ForkJoinTask clients

• It also provides management 
& monitoring operations

Processing Chunks in a Parallel Stream

int getParallelism() – Returns the targeted 
parallelism level of this pool

int getPoolSize() – Returns the number of 
worker threads that have started but not 
yet terminated

int getQueuedSubmissionCount() – Returns an 
estimate of the number of tasks submitted 
to this pool that have not yet begun 
executing

long getStealCount() – Returns an estimate of 
the total number of tasks stolen from one 
thread's work queue by another

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#getPoolSize--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#getQueuedSubmissionCount--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#getStealCount--
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• A ForkJoinTask is a chunk of data along with functionality on that data
Processing Chunks in a Parallel Stream

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html
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• A ForkJoinTask is a chunk of data along with functionality on that data
• It defines two primary

methods

Processing Chunks in a Parallel Stream

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html

ForkJoinTask
<T>

fork() – Arranges to asynchronously 
execute this task in the appropriate pool

V join() – Returns the result of the 
computation when it is done

V invoke() – Commences performing this 
task, awaits its completion if necessary, 
and returns its result

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#submit-java.util.concurrent.ForkJoinTask-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#submit-java.util.concurrent.ForkJoinTask-
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• A ForkJoinTask is a chunk of data along with functionality on that data
• It defines two primary

methods
• The Java 8 parallel 

streams framework
calls fork()/join() via
CountedCompleter

Processing Chunks in a Parallel Stream

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CountedCompleter.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CountedCompleter.html
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• A ForkJoinTask is a chunk of data along with functionality on that data
• It defines two primary

methods
• invoke() is essentially

fork(); join();

Processing Chunks in a Parallel Stream

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html

ForkJoinTask
<T>

fork() – Arranges to asynchronously 
execute this task in the appropriate pool

V join() – Returns the result of the 
computation when it is done

V invoke() – Commences performing this 
task, awaits its completion if necessary, 
and returns its result

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html#submit-java.util.concurrent.ForkJoinTask-
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• A ForkJoinTask is a chunk of data along with functionality on that data
• It defines two primary

methods
• invoke() is essentially

fork(); join();
• A ForkJoinTask is lighter 

weight than a Java thread

Processing Chunks in a Parallel Stream

Thread

ForkJoinTask

e.g., it doesn’t maintain its own run-time stack
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• A ForkJoinTask is a chunk of data along with functionality on that data
• It defines two primary

methods
• invoke() is essentially

fork(); join();
• A ForkJoinTask is lighter 

weight than a Java thread
• A large # of ForkJoinTasks

thus run in a small # of Java 
threads in a ForkJoinPool

Processing Chunks in a Parallel Stream

ForkJoinTasks

See www.infoq.com/interviews/doug-lea-fork-join

http://www.infoq.com/interviews/doug-lea-fork-join
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• A circular dequeue is associated 
with each ForkJoinPool thread Sub-Task1.1

Sub-Task1.2

Sub-Task1.3 Sub-Task3.3

Sub-Task3.4

Dequeue Dequeue Dequeue

Processing Chunks in a Parallel Stream

See en.wikipedia.org/wiki/Double-ended_queue

Sub-Task1.4

https://en.wikipedia.org/wiki/Double-ended_queue
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• A circular dequeue is associated 
with each ForkJoinPool thread
• fork() pushes a new task to 

the head of its dequeue

Sub-Task1.1

Sub-Task1.2

Sub-Task1.3 Sub-Task3.3

Sub-Task3.4Sub-Task2.4

Dequeue Dequeue Dequeue

Processing Chunks in a Parallel Stream

Sub-Task1.4

See gee.cs.oswego.edu/dl/papers/fj.pdf

http://gee.cs.oswego.edu/dl/papers/fj.pdf
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• A circular dequeue is associated 
with each ForkJoinPool thread
• fork() pushes a new task to 

the head of its dequeue
• Likewise, a thread pops the

next task its processes from 
the head of its dequeue

Sub-Task1.1

Sub-Task1.2

Sub-Task1.3 Sub-Task3.3

Sub-Task3.4

Sub-Task2.4

Dequeue Dequeue Dequeue

Processing Chunks in a Parallel Stream

Sub-Task1.4
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• A circular dequeue is associated 
with each ForkJoinPool thread
• fork() pushes a new task to 

the head of its dequeue
• Likewise, a thread pops the

next task its processes from 
the head of its dequeue

Sub-Task1.1

Sub-Task1.2

Sub-Task1.3 Sub-Task3.3

Sub-Task3.4

Sub-Task2.4

Dequeue Dequeue Dequeue

Processing Chunks in a Parallel Stream

Sub-Task1.4

“FIFO” pop/push enhances locality of reference & improves cache performance
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• A circular dequeue is associated 
with each ForkJoinPool thread
• fork() pushes a new task to 

the head of its dequeue
• Likewise, a thread pops the

next task its processes from 
the head of its dequeue

• An idle thread “steals” work 
from the tail of a busy thread 
to maximize core utilitization

See docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

Processing Chunks in a Parallel Stream

Sub-Task1.2

Sub-Task1.3

Sub-Task1.4

Sub-Task1.1

Sub-Task3.3

Sub-Task3.4

Dequeue Dequeue Dequeue

http://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html


22

Processing Chunks in a Parallel Stream

See www.dre.vanderbilt.edu/~schmidt/PDF/work-stealing-dequeue.pdf

Sub-Task1.2

Sub-Task1.3

Sub-Task1.4

Sub-Task1.1

Sub-Task3.3

Sub-Task3.4

Dequeue Dequeue Dequeue• A circular dequeue is associated 
with each ForkJoinPool thread
• fork() pushes a new task to 

the head of its dequeue
• Likewise, a thread pops the

next task its processes from 
the head of its dequeue

• An idle thread “steals” work 
from the tail of a busy thread 
to maximize core utilitization
• The circular dequeue used for 

work-stealing lowers contention

http://www.dre.vanderbilt.edu/%7Eschmidt/PDF/work-stealing-dequeue.pdf
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Sub-Task1.1

• Parallel streams is a “user 
friendly” ForkJoinPool façade

See espressoprogrammer.com/fork-join-vs-parallel-stream-java-8

Processing Chunks in a Parallel Stream

Sub-Task1.2

Sub-Task1.3

Sub-Task1.4

Sub-Task3.3

Sub-Task3.4

Dequeue Dequeue Dequeue

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

collect(toList())

45,000+ phrases

Search Phrases

http://espressoprogrammer.com/fork-join-vs-parallel-stream-java-8/
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• Parallel streams is a “user 
friendly” ForkJoinPool façade
• You can program directly to 

the ForkJoinPool API, though 
it can be somewhat painful!

List<List<SearchResults>> 
listOfListOfSearchResults =
ForkJoinPool.commonPool()
.invoke(new 

SearchWithForkJoinTask
(inputList, 
mPhrasesToFind, ...));

Processing Chunks in a Parallel Stream
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• Parallel streams is a “user 
friendly” ForkJoinPool façade
• You can program directly to 

the ForkJoinPool API, though 
it can be somewhat painful!

See github.com/douglascraigschmidt/LiveLessons/tree/master/SearchStreamForkJoin

Use the common fork-join 
pool to search input strings 

for phrases that match

45,000+ phrases

Search Phrases

Input Strings to Search

…

Processing Chunks in a Parallel Stream
List<List<SearchResults>> 

listOfListOfSearchResults =
ForkJoinPool.commonPool()
.invoke(new 

SearchWithForkJoinTask
(inputList, 
mPhrasesToFind, ...));

https://github.com/douglascraigschmidt/LiveLessons/tree/master/PalantiriManagerApplication
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• Parallel streams is a “user 
friendly” ForkJoinPool façade
• You can program directly to 

the ForkJoinPool API, though 
it can be somewhat painful!
• Used for algorithms that 

don’t match Java 8’s parallel 
streams programming model

See www.oracle.com/technetwork/articles/java/fork-join-422606.html

Long compute() { 
long count = 0L; 
List<RecursiveTask<Long>> forks = 

new LinkedList<>(); 
for (Folder sub : mFolder.getSubs()){

FolderSearchTask task = new 
FolderSearchTask(sub, mWord); 

forks.add(task); task.fork(); 
} 
for (Doc doc : mFolder.getDocs()) {

DocSearchTask task = 
new DocSearchTask(doc, mWord); 

forks.add(task); task.fork(); 
} 
for (RecursiveTask<Long> task : forks) 

count = count + task.join();
return count; 

} 

Processing Chunks in a Parallel Stream

http://www.oracle.com/technetwork/articles/java/fork-join-422606.html
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End of Java 8 Parallel 
Stream Internals (Part 3)
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