
Java 8 Parallel Streams Internals
(Part 1)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

• Understand parallel stream internals
Learning Objectives in this Part of the Lesson

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

List<String>1.1 List<String>1.2 List<String>2.1 List<String>2.2

List<String>1 List<String>2

trySplit()

List<String>

trySplit() trySplit()

See www.ibm.com/developerworks/library/j-java-streams-3-brian-goetz

http://www.ibm.com/developerworks/library/j-java-streams-3-brian-goetz

3

• Understand parallel stream internals, e.g.
• Know what can change & what can’t

Learning Objectives in this Part of the Lesson

4

Why Knowledge of
Parallel Streams Matters

5

• Knowledge of (parallel) streams internals will make you a better Java 8
streams programmer!

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

List<String>1.1 List<String>1.2 List<String>2.1 List<String>2.2

List<String>1 List<String>2

trySplit()

List<String>

trySplit() trySplit()

See www.ibm.com/developerworks/library/j-java-streams-3-brian-goetz

When performance is
critical, it's important
to understand how

streams work internally

Why Knowledge of Parallel Streams Matters

http://www.ibm.com/developerworks/library/j-java-streams-3-brian-goetz

6See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

Why Knowledge of Parallel Streams Matters
• Recall the 3 phases of a Java 8 parallel stream

Output
f(x)

Output
g(f(x))

…

Input x

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (reducer)

Stream factory operation ()

https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

7

Why Knowledge of Parallel Streams Matters
• Recall the 3 phases of a Java 8 parallel stream

• Splits its elements into multiple chunks
…

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (reducer)

Stream factory operation ()

Output
f(x)

Output
g(f(x))

Input x

8

Why Knowledge of Parallel Streams Matters
• Recall the 3 phases of a Java 8 parallel stream

• Splits its elements into multiple chunks
• Applies processing on these chunks to

run them in a thread pool independently

…

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (reducer)

Stream factory operation ()

Output
f(x)

Output
g(f(x))

Input x

9

Why Knowledge of Parallel Streams Matters
• Recall the 3 phases of a Java 8 parallel stream

• Splits its elements into multiple chunks
• Applies processing on these chunks to

run them in a thread pool independently
• Combines partial results into a single

result

…

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (reducer)

Stream factory operation ()

Output
f(x)

Output
g(f(x))

Input x

10

Why Knowledge of Parallel Streams Matters
• Recall the 3 phases of a Java 8 parallel stream

• Splits its elements into multiple chunks
• Applies processing on these chunks to

run them in a thread pool independently
• Combines partial results into a single

result

…

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (reducer)

Stream factory operation ()

Output
f(x)

Output
g(f(x))

Input x

It’s important to which of these phases you can control & which you can’t!

11

Parallel Stream Splitting &
Thread Pool Mechanisms

12

• A parallel stream’s splitting & thread pool
mechanisms are often invisible

Parallel Stream Splitting & Thread Pool Mechanisms
…

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (behavior h)

Stream factory operation ()

Output
f(x)

Output
g(f(x))

Input x

13

• A parallel stream’s splitting & thread pool
mechanisms are often invisible, e.g.
• Java collections have predefined

spliterators

Parallel Stream Splitting & Thread Pool Mechanisms
…

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (behavior h)

Stream factory operation ()

Output
f(x)

Output
g(f(x))

Input x

See blog.logentries.com/2015/10/java-8-introduction-to-parallelism-and-spliterator

public interface Collection<E> {

default Stream<E> stream() {
return StreamSupport
.stream(spliterator(), false);

}

default Spliterator<E> spliterator() {
return Spliterators
.spliterator(this, 0);

}
}

https://blog.logentries.com/2015/10/java-8-introduction-to-parallelism-and-spliterator

14

• A parallel stream’s splitting & thread pool
mechanisms are often invisible, e.g.
• Java collections have predefined

spliterators
• A common fork-join pool is used by

default

Parallel Stream Splitting & Thread Pool Mechanisms
…

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (behavior h)

Stream factory operation ()

Output
f(x)

Output
g(f(x))

Input x

See www.baeldung.com/java-fork-join

http://www.baeldung.com/java-fork-join

15

• However, programmers can customize the
behavior of splitting & thread pools

Parallel Stream Splitting & Thread Pool Mechanisms
…

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (behavior h)

Stream factory operation ()

Output
f(x)

Output
g(f(x))

Input x

public interface ManagedBlocker {
boolean block()
throws InterruptedException;

boolean isReleasable();
}

public interface Spliterator<T> {
boolean tryAdvance
(Consumer<? Super T> action);

Spliterator<T> trySplit();

long estimateSize();

int characteristics();
}

See Parts 2 & 4 of this lesson on “Java 8 Parallel Stream Internals”

16

Parallel Stream Ordering

17

• The order in which chunks are processed
is non-deterministic

Parallel Stream Ordering

Output
f(x)

Output
g(f(x))

…

Input x

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (reducer)

Stream factory operation ()

18

• The order in which chunks are processed
is non-deterministic
• Programmers have little/no control

over how chunks are processed

Parallel Stream Ordering

Output
f(x)

Output
g(f(x))

…

Input x

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (reducer)

Stream factory operation ()

19

• The order in which chunks are processed
is non-deterministic
• Programmers have little/no control

over how chunks are processed
• Non-determinism is useful since it

enables optimizations at multiple layers!

Parallel Stream Ordering

Additional Frameworks & Languages

Operating System Kernel

Applications

System Libraries

Java Execution Environment (e.g., JVM)

Threading & Synchronization Packages

e.g., scheduling & execution of tasks via fork-join pool, JVM, hardware cores, etc.

20

• The results of the processing are more
deterministic

Parallel Stream Ordering
…

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (reducer)

Stream factory operation ()

Output
f(x)

Output
g(f(x))

Input x

21

• The results of the processing are more
deterministic
• Programmers can control how results

are presented

Parallel Stream Ordering
…

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (reducer)

Stream factory operation ()

Output
f(x)

Output
g(f(x))

Input x

See www.logicbig.com/tutorials/core-java-tutorial/java-util-stream/ordering

http://www.logicbig.com/tutorials/core-java-tutorial/java-util-stream/ordering

22

• The results of the processing are more
deterministic
• Programmers can control how results

are presented
• Order is maintained if the source is

ordered & the aggregate operations
used are obliged to maintain order

Parallel Stream Ordering
…

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (reducer)

Stream factory operation ()

Output
f(x)

Output
g(f(x))

Input x

See www.ibm.com/developerworks/library/j-java-streams-3-brian-goetz/index.html#eo

It doesn’t matter whether the
stream is parallel or sequential

http://www.ibm.com/developerworks/library/j-java-streams-3-brian-goetz/index.html#eo

23

• The results of the processing are more
deterministic
• Programmers can control how results

are presented
• Order is maintained if the source is

ordered & the aggregate operations
used are obliged to maintain order
• Ordered spliterators, ordered

collections, & static stream factory
methods respect “encounter order”

Parallel Stream Ordering

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex21

List<Integer> list =
Arrays.asList(1, 2, ...);

Integer[] doubledList = list
.parallelStream()
.filter(x -> x % 2 == 0)
.map(x -> x * 2)
.toArray(Integer[]::new);

The encounter order is [1, 2,
3, 4, …] since list is ordered

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex21

24

• The results of the processing are more
deterministic
• Programmers can control how results

are presented
• Order is maintained if the source is

ordered & the aggregate operations
used are obliged to maintain order
• Ordered spliterators, ordered

collections, & static stream factory
methods respect “encounter order”

Parallel Stream Ordering

The result must be [2, 4, …]

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex21

List<Integer> list =
Arrays.asList(1, 2, ...);

Integer[] doubledList = list
.parallelStream()
.filter(x -> x % 2 == 0)
.map(x -> x * 2)
.toArray(Integer[]::new);

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex21

25

• The results of the processing are more
deterministic
• Programmers can control how results

are presented
• Order is maintained if the source is

ordered & the aggregate operations
used are obliged to maintain order
• Ordered spliterators, ordered

collections, & static stream factory
methods respect “encounter order”

• Unordered collections don’t need
to respect “encounter order”

Parallel Stream Ordering
Set<Integer> set = new

HashSet<>
(Arrays.asList(1, 2, ...);

Integer[] doubledSet = set
.parallelStream()
.filter(x -> x % 2 == 0)
.map(x -> x * 2)
.toArray(Integer[]::new);

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex21

A HashSet is unordered

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex21

26

• The results of the processing are more
deterministic
• Programmers can control how results

are presented
• Order is maintained if the source is

ordered & the aggregate operations
used are obliged to maintain order
• Ordered spliterators, ordered

collections, & static stream factory
methods respect “encounter order”

• Unordered collections don’t need
to respect “encounter order”

Parallel Stream Ordering
Set<Integer> set = new

HashSet<>
(Arrays.asList(1, 2, ...);

Integer[] doubledSet = set
.parallelStream()
.filter(x -> x % 2 == 0)
.map(x -> x * 2)
.toArray(Integer[]::new);

This code runs faster since encounter
order need not be maintained

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex21

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex21

27

• The results of the processing are more
deterministic
• Programmers can control how results

are presented
• Order is maintained if the source is

ordered & the aggregate operations
used are obliged to maintain order

• Certain intermediate operations effect
ordering behavior

Parallel Stream Ordering
…

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (reducer)

Stream factory operation ()

Output
f(x)

Output
g(f(x))

Input x

28

• The results of the processing are more
deterministic
• Programmers can control how results

are presented
• Order is maintained if the source is

ordered & the aggregate operations
used are obliged to maintain order

• Certain intermediate operations effect
ordering behavior
• e.g., sorted(), unordered(),

skip(), & limit()

Parallel Stream Ordering

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex21

The result must be [2, 4, …], but the
code is slow due to limit() & distinct()
“stateful” semantics in parallel streams

List<Integer> list =
Arrays.asList(1, 2, ...);

Integer[] doubledList = list
.parallelStream()
.distinct()
.filter(x -> x % 2 == 0)
.map(x -> x * 2)
.limit(sOutputLimit)
.toArray(Integer[]::new);

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex21

29

• The results of the processing are more
deterministic
• Programmers can control how results

are presented
• Order is maintained if the source is

ordered & the aggregate operations
used are obliged to maintain order

• Certain intermediate operations effect
ordering behavior
• e.g., sorted(), unordered(),

skip(), & limit()

Parallel Stream Ordering
List<Integer> list =

Arrays.asList(1, 2, ...);

Integer[] doubledList = list
.parallelStream()
.unordered()
.distinct()
.filter(x -> x % 2 == 0)
.map(x -> x * 2)
.limit(sOutputLimit)
.toArray(Integer[]::new);

This code runs faster since stream
is unordered & thus limit() &
distinct() incur less overhead

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex21

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex21

30

• The results of the processing are more
deterministic
• Programmers can control how results

are presented
• Order is maintained if the source is

ordered & the aggregate operations
used are obliged to maintain order

• Certain intermediate operations effect
ordering behavior

• Certain terminal operations also effect
ordering behavior

Parallel Stream Ordering
…

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (reducer)

Stream factory operation ()

Output
f(x)

Output
g(f(x))

Input x

31

• The results of the processing are more
deterministic
• Programmers can control how results

are presented
• Order is maintained if the source is

ordered & the aggregate operations
used are obliged to maintain order

• Certain intermediate operations effect
ordering behavior

• Certain terminal operations also effect
ordering behavior
• e.g., forEachOrdered() & forEach()

Parallel Stream Ordering
List<Integer> list =

Arrays.asList(1, 2, ...);

ConcurrentLinkedQueue
<Integer> queue = new
ConcurrentLinkedQueue<>();

list
.parallelStream()
.distinct()
.filter(x -> x % 2 == 0)
.map(x -> x * 2)
.limit(sOutputLimit)
.forEachOrdered(queue::add);

Ordered

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex21

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex21

32

• The results of the processing are more
deterministic
• Programmers can control how results

are presented
• Order is maintained if the source is

ordered & the aggregate operations
used are obliged to maintain order

• Certain intermediate operations effect
ordering behavior

• Certain terminal operations also effect
ordering behavior
• e.g., forEachOrdered() & forEach()

Parallel Stream Ordering

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex21

List<Integer> list =
Arrays.asList(1, 2, ...);

ConcurrentLinkedQueue
<Integer> queue = new
ConcurrentLinkedQueue<>();

list
.parallelStream()
.distinct()
.filter(x -> x % 2 == 0)
.map(x -> x * 2)
.limit(sOutputLimit)
.forEach(queue::add);

Unordered

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex21

33

End of Java 8 Parallel
Stream Internals (Part 1)

	Slide Number 1
	Learning Objectives in this Part of the Lesson
	Learning Objectives in this Part of the Lesson
	Why Knowledge of Parallel Streams Matters
	Why Knowledge of Parallel Streams Matters
	Why Knowledge of Parallel Streams Matters
	Why Knowledge of Parallel Streams Matters
	Why Knowledge of Parallel Streams Matters
	Why Knowledge of Parallel Streams Matters
	Why Knowledge of Parallel Streams Matters
	Parallel Stream Splitting & Thread Pool Mechanisms
	Parallel Stream Splitting & Thread Pool Mechanisms
	Parallel Stream Splitting & Thread Pool Mechanisms
	Parallel Stream Splitting & Thread Pool Mechanisms
	Parallel Stream Splitting & Thread Pool Mechanisms
	Parallel Stream Ordering
	Parallel Stream Ordering
	Parallel Stream Ordering
	Parallel Stream Ordering
	Parallel Stream Ordering
	Parallel Stream Ordering
	Parallel Stream Ordering
	Parallel Stream Ordering
	Parallel Stream Ordering
	Parallel Stream Ordering
	Parallel Stream Ordering
	Parallel Stream Ordering
	Parallel Stream Ordering
	Parallel Stream Ordering
	Parallel Stream Ordering
	Parallel Stream Ordering
	Parallel Stream Ordering
	End of Java 8 Parallel Stream Internals (Part 1)

