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• Understand parallel stream internals
Learning Objectives in this Part of the Lesson
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See www.ibm.com/developerworks/library/j-java-streams-3-brian-goetz

http://www.ibm.com/developerworks/library/j-java-streams-3-brian-goetz
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• Understand parallel stream internals, e.g.
• Know what can change & what can’t

Learning Objectives in this Part of the Lesson
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Why Knowledge of 
Parallel Streams Matters
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• Knowledge of (parallel) streams internals will make you a better Java 8 
streams programmer!
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See www.ibm.com/developerworks/library/j-java-streams-3-brian-goetz

When performance is 
critical, it's important
to understand how 

streams work internally

Why Knowledge of Parallel Streams Matters

http://www.ibm.com/developerworks/library/j-java-streams-3-brian-goetz
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Why Knowledge of Parallel Streams Matters
• Recall the 3 phases of a Java 8 parallel stream
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g(f(x))

…
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Terminal operation (reducer)

Stream factory operation ()

https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html
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Why Knowledge of Parallel Streams Matters
• Recall the 3 phases of a Java 8 parallel stream

• Splits its elements into multiple chunks
…

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (reducer)

Stream factory operation ()

Output 
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Output 
g(f(x))

Input x
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Why Knowledge of Parallel Streams Matters
• Recall the 3 phases of a Java 8 parallel stream

• Splits its elements into multiple chunks
• Applies processing on these chunks to

run them in a thread pool independently

…

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (reducer)

Stream factory operation ()

Output 
f(x)

Output 
g(f(x))

Input x



9

Why Knowledge of Parallel Streams Matters
• Recall the 3 phases of a Java 8 parallel stream

• Splits its elements into multiple chunks
• Applies processing on these chunks to

run them in a thread pool independently
• Combines partial results into a single

result

…

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (reducer)

Stream factory operation ()

Output 
f(x)

Output 
g(f(x))

Input x
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Why Knowledge of Parallel Streams Matters
• Recall the 3 phases of a Java 8 parallel stream

• Splits its elements into multiple chunks
• Applies processing on these chunks to

run them in a thread pool independently
• Combines partial results into a single

result

…

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (reducer)

Stream factory operation ()

Output 
f(x)

Output 
g(f(x))

Input x

It’s important to which of these phases you can control & which you can’t!
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Parallel Stream Splitting & 
Thread Pool Mechanisms 
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• A parallel stream’s splitting & thread pool 
mechanisms are often invisible

Parallel Stream Splitting & Thread Pool Mechanisms 
…

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (behavior h)

Stream factory operation ()

Output 
f(x)

Output 
g(f(x))

Input x
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• A parallel stream’s splitting & thread pool 
mechanisms are often invisible, e.g.
• Java collections have predefined

spliterators

Parallel Stream Splitting & Thread Pool Mechanisms 
…

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (behavior h)

Stream factory operation ()

Output 
f(x)

Output 
g(f(x))

Input x

See blog.logentries.com/2015/10/java-8-introduction-to-parallelism-and-spliterator

public interface Collection<E> {

default Stream<E> stream() {
return StreamSupport
.stream(spliterator(), false);

}

default Spliterator<E> spliterator() {
return Spliterators
.spliterator(this, 0);

}
}

https://blog.logentries.com/2015/10/java-8-introduction-to-parallelism-and-spliterator
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• A parallel stream’s splitting & thread pool 
mechanisms are often invisible, e.g.
• Java collections have predefined

spliterators
• A common fork-join pool is used by 

default

Parallel Stream Splitting & Thread Pool Mechanisms 
…

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (behavior h)

Stream factory operation ()

Output 
f(x)

Output 
g(f(x))

Input x

See www.baeldung.com/java-fork-join

http://www.baeldung.com/java-fork-join
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• However, programmers can customize the
behavior of splitting & thread pools

Parallel Stream Splitting & Thread Pool Mechanisms 
…

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (behavior h)

Stream factory operation ()

Output 
f(x)

Output 
g(f(x))

Input x

public interface ManagedBlocker {
boolean block() 
throws InterruptedException; 

boolean isReleasable(); 
}

public interface Spliterator<T> {
boolean tryAdvance
(Consumer<? Super T> action);

Spliterator<T> trySplit();

long estimateSize();

int characteristics(); 
}

See Parts 2 & 4 of this lesson on “Java 8 Parallel Stream Internals”
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Parallel Stream Ordering
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• The order in which chunks are processed 
is non-deterministic

Parallel Stream Ordering

Output 
f(x)

Output 
g(f(x))

…

Input x

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (reducer)

Stream factory operation ()
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• The order in which chunks are processed 
is non-deterministic
• Programmers have little/no control 

over how chunks are processed

Parallel Stream Ordering

Output 
f(x)

Output 
g(f(x))

…

Input x

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (reducer)

Stream factory operation ()
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• The order in which chunks are processed 
is non-deterministic
• Programmers have little/no control 

over how chunks are processed
• Non-determinism is useful since it 

enables optimizations at multiple layers!

Parallel Stream Ordering

Additional Frameworks & Languages

Operating System Kernel

Applications

System Libraries

Java Execution Environment (e.g., JVM)

Threading & Synchronization Packages

e.g., scheduling & execution of tasks via fork-join pool, JVM, hardware cores, etc.
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• The results of the processing are more
deterministic

Parallel Stream Ordering
…

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (reducer)

Stream factory operation ()

Output 
f(x)

Output 
g(f(x))

Input x
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• The results of the processing are more
deterministic
• Programmers can control how results 

are presented

Parallel Stream Ordering
…

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (reducer)

Stream factory operation ()

Output 
f(x)

Output 
g(f(x))

Input x

See www.logicbig.com/tutorials/core-java-tutorial/java-util-stream/ordering

http://www.logicbig.com/tutorials/core-java-tutorial/java-util-stream/ordering
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• The results of the processing are more
deterministic
• Programmers can control how results 

are presented
• Order is maintained if the source is 

ordered & the aggregate operations 
used are obliged to maintain order

Parallel Stream Ordering
…

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (reducer)

Stream factory operation ()

Output 
f(x)

Output 
g(f(x))

Input x

See www.ibm.com/developerworks/library/j-java-streams-3-brian-goetz/index.html#eo

It doesn’t matter whether the 
stream is parallel or sequential 

http://www.ibm.com/developerworks/library/j-java-streams-3-brian-goetz/index.html#eo


23

• The results of the processing are more
deterministic
• Programmers can control how results 

are presented
• Order is maintained if the source is 

ordered & the aggregate operations 
used are obliged to maintain order
• Ordered spliterators, ordered

collections, & static stream factory
methods respect “encounter order”

Parallel Stream Ordering

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex21

List<Integer> list = 
Arrays.asList(1, 2, ...);

Integer[] doubledList = list
.parallelStream()
.filter(x -> x % 2 == 0)
.map(x -> x * 2)
.toArray(Integer[]::new);

The encounter order is [1, 2, 
3, 4, …]  since list is ordered

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex21
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• The results of the processing are more
deterministic
• Programmers can control how results 

are presented
• Order is maintained if the source is 

ordered & the aggregate operations 
used are obliged to maintain order
• Ordered spliterators, ordered

collections, & static stream factory
methods respect “encounter order”

Parallel Stream Ordering

The result must be [2, 4, …]

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex21

List<Integer> list = 
Arrays.asList(1, 2, ...);

Integer[] doubledList = list
.parallelStream()
.filter(x -> x % 2 == 0)
.map(x -> x * 2)
.toArray(Integer[]::new);

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex21
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• The results of the processing are more
deterministic
• Programmers can control how results 

are presented
• Order is maintained if the source is 

ordered & the aggregate operations 
used are obliged to maintain order
• Ordered spliterators, ordered

collections, & static stream factory
methods respect “encounter order”

• Unordered collections don’t need
to respect “encounter order”

Parallel Stream Ordering
Set<Integer> set = new 

HashSet<>
(Arrays.asList(1, 2, ...);

Integer[] doubledSet = set
.parallelStream()
.filter(x -> x % 2 == 0)
.map(x -> x * 2)
.toArray(Integer[]::new);

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex21

A HashSet is unordered

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex21
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• The results of the processing are more
deterministic
• Programmers can control how results 

are presented
• Order is maintained if the source is 

ordered & the aggregate operations 
used are obliged to maintain order
• Ordered spliterators, ordered

collections, & static stream factory
methods respect “encounter order”

• Unordered collections don’t need
to respect “encounter order”

Parallel Stream Ordering
Set<Integer> set = new 

HashSet<>
(Arrays.asList(1, 2, ...);

Integer[] doubledSet = set
.parallelStream()
.filter(x -> x % 2 == 0)
.map(x -> x * 2)
.toArray(Integer[]::new);

This code runs faster since encounter 
order need not be maintained

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex21

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex21
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• The results of the processing are more
deterministic
• Programmers can control how results 

are presented
• Order is maintained if the source is 

ordered & the aggregate operations 
used are obliged to maintain order

• Certain intermediate operations effect
ordering behavior

Parallel Stream Ordering
…

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (reducer)

Stream factory operation ()

Output 
f(x)

Output 
g(f(x))

Input x
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• The results of the processing are more
deterministic
• Programmers can control how results 

are presented
• Order is maintained if the source is 

ordered & the aggregate operations 
used are obliged to maintain order

• Certain intermediate operations effect
ordering behavior
• e.g., sorted(), unordered(), 

skip(), & limit() 

Parallel Stream Ordering

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex21

The result must be [2, 4, …], but the 
code is slow due to limit() & distinct() 
“stateful” semantics in parallel streams

List<Integer> list = 
Arrays.asList(1, 2, ...);

Integer[] doubledList = list
.parallelStream()
.distinct()
.filter(x -> x % 2 == 0)
.map(x -> x * 2)
.limit(sOutputLimit)
.toArray(Integer[]::new);

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex21
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• The results of the processing are more
deterministic
• Programmers can control how results 

are presented
• Order is maintained if the source is 

ordered & the aggregate operations 
used are obliged to maintain order

• Certain intermediate operations effect
ordering behavior
• e.g., sorted(), unordered(), 

skip(), & limit() 

Parallel Stream Ordering
List<Integer> list = 

Arrays.asList(1, 2, ...);

Integer[] doubledList = list
.parallelStream()
.unordered()
.distinct()
.filter(x -> x % 2 == 0)
.map(x -> x * 2)
.limit(sOutputLimit)
.toArray(Integer[]::new);

This code runs faster since stream 
is unordered & thus limit() & 
distinct() incur less overhead

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex21

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex21
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• The results of the processing are more
deterministic
• Programmers can control how results 

are presented
• Order is maintained if the source is 

ordered & the aggregate operations 
used are obliged to maintain order

• Certain intermediate operations effect
ordering behavior

• Certain terminal operations also effect
ordering behavior

Parallel Stream Ordering
…

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (reducer)

Stream factory operation ()

Output 
f(x)

Output 
g(f(x))

Input x
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• The results of the processing are more
deterministic
• Programmers can control how results 

are presented
• Order is maintained if the source is 

ordered & the aggregate operations 
used are obliged to maintain order

• Certain intermediate operations effect
ordering behavior

• Certain terminal operations also effect
ordering behavior
• e.g., forEachOrdered() & forEach()

Parallel Stream Ordering
List<Integer> list = 

Arrays.asList(1, 2, ...);

ConcurrentLinkedQueue
<Integer> queue = new 
ConcurrentLinkedQueue<>();

list
.parallelStream()
.distinct()
.filter(x -> x % 2 == 0)
.map(x -> x * 2)
.limit(sOutputLimit)
.forEachOrdered(queue::add);

Ordered

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex21

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex21
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• The results of the processing are more
deterministic
• Programmers can control how results 

are presented
• Order is maintained if the source is 

ordered & the aggregate operations 
used are obliged to maintain order

• Certain intermediate operations effect
ordering behavior

• Certain terminal operations also effect
ordering behavior
• e.g., forEachOrdered() & forEach()

Parallel Stream Ordering

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex21

List<Integer> list = 
Arrays.asList(1, 2, ...);

ConcurrentLinkedQueue
<Integer> queue = new 
ConcurrentLinkedQueue<>();

list
.parallelStream()
.distinct()
.filter(x -> x % 2 == 0)
.map(x -> x * 2)
.limit(sOutputLimit)
.forEach(queue::add);

Unordered

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex21
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End of Java 8 Parallel 
Stream Internals (Part 1)
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