Overview of Java 8 Streams (Part 1)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software
Integrated Systems

vV

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Understand the structure & functionality of Java 8 streams

l ! Input x

Aggregate operation (behavior f)

l | Output f(x)

Aggregate operation (behavior g)

Output g(f(x))

Aggregate operation (behavior h)

@ Output h(g(f(x)))

Learning Objectives in this Part of the Lesson

* Understand the structure & functionality of Java 8 streams, e.g.,

 Fundamentals of streams

l ! Input x

Aggregate operation (behavior f)

! | Output f(x)

Aggregate operation (behavior Q)

Output g(f(x))

Aggregate operation (behavior h)

@ Output h(g(f(x)))

Learning Objectives in this Part of the Lesson

* Understand the structure & functionality of Java 8 streams, e.g.,

Fundamentals of streams

« We’'ll use an example program
to illustrate key concepts

-

.

Stream
.of("'horatio",
"laertes",
“"Hamlet', ...)
.Filter(s -> toLowerCase
(s.charAt(0)) == "h")
.map(this::capitalize)
.sorted()
.forEach(System.out: :printin);

l ! Input x

Aggregate operation (behavior f)

! | Output f(x)

Aggregate operation (behavior Q)

Output g(f(x))

Aggregate operation (behavior h)

J

@ Output h(g(f(x)))

See qgithub.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12

Overview of
Java 8 Streams

Overview of Java 8 Streams

e Java 8 streams are an addition to the

Java library that provide programs
with several key benefits

)
Sammm

Java g

What's New in JDK 8

Java Platform, Standard Edition 8 is a major feature release. This document summarizes features and
enhancements in Java SE 8 and in JOK 8, Oracle’s implementation of Java SE 8. Click the
compenent name for a more detailed description of the enhancements for that component.

= Java Programming Language

= Lambda Expressions, a new language feature, has been intreduced in this release. They
enable you to treat functionality as a method argument, or code as data. Lambda
expressions let you express instances of single-method interfaces (referred to as functional
interfaces) more compactly.

= Method references provide easy-to-read lambda expressions for methods that already have
a name.

= Default methods enable new functionality to be added to the interfaces of libraries and
ensure binary compatibility with code written for older versions of those interfaces.

= Repeating Annotations provide the ability to apply the same annctation type more than once
to the same declaration or type use.

= Type Annctaticns provide the ability te apply an annctation anywhere a type is used, nct
just on a declaration. Used with a pluggable type system, this feature enables improved
type checking of your code.

= Improved type inference.
= Method parameter reflection.

* Collections

= Classes inthe new jzwva.util. scream package provide a Stream API to support
functional-style cperations on streams of elements. The Stream API is integrated into the
Collections API, which enables bulk operations on collections, such as sequential or
parallel map-reduce transformations.

= Performance Improvement for HashiMaps with Key Collisions

See docs.oracle.com/javase/tutorial/collections/streams

https://docs.oracle.com/javase/tutorial/collections/streams

Overview of Java 8 Streams

e Java 8 streams are an addition to the EEOEEE... O
Java library that provide programs
with several key benefits @
« Manipulate flows of data in a

decl _ filter(not(this::urlCached))
eclarative way U

map(this::downloadimage)

This stream expresses what / flatMap(this::applyFilters)

operations to perform, not
how to perform them @

collect(toList())

~~

See github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

https://github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

Overview of Java 8 Streams

e Java 8 streams are an addition to the HEOEEE... O
Java library that provide programs ~ __ Se———————J

with several key benefits 'ég {}»é ii »g ii %é

i
i
i
i
i
i
i
i
i
l
: map(this::downloadimage)
i
i
i
i
i
|
i
i
i

U 1 1

e Enable transparent parallelization
without the need to write any
multi-threaded code

flatMap(this:.applyFilters)
The data elements in this / ? y
G ! !

Stream are automatically ! !
mapped to processor cores || collect(toList())

See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

http://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

Overview of Java 8 Streams

« A stream is a pipeline of aggregate operations that process a sequence of

elements (aka, “values”) | | Input X

Aggregate operation (behavior f)

! | Output f(x)

Aggregate operation (behavior g)

! | Output g(f(x))

Aggregate operation (behavior h)

See docs.oracle.com/javase/tutorial/collections/streams

https://docs.oracle.com/javase/tutorial/collections/streams

Overview of Java 8 Streams

« A stream is a pipeline of aggregate operations that process a sequence of

elements (aka, “values”)

\\\\\\\\\\\\\
1
\ \ 111y,

Xy
‘‘‘‘‘
‘‘‘‘‘‘‘‘
\.'-
‘i
\

A)
i
Ul

11}
.
R

! ! Input x

Aggregate operation (behavior f)

! | Output f(x)

Aggregate operation (behavior g)

! | Output g(f(x))

A stream Is conceptually unbounded, though they
are typically bounded by practical constraints

Aggregate operation (behavior h)

10

Overview of Java 8 Streams

« A stream is a pipeline of aggregate operations that process a sequence of

elements (aka, “values”)

p
Stream

.of(""horatio",

"laertes',

“"Hamlet', ...)
.Filter(s -> toLowerCase

(s.charAt(0)) == "h")

.map(this::capitalize)
.sorted()
.forEach(System.out: :printin);

! ! Input x

Aggregate operation (behavior f)

! | Output f(x)

Aggregate operation (behavior g)

l | Output g(f(x))

J

Aggregate operation (behavior h)

See qgithub.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12

Overview of Java 8 Streams

« A stream is created via a factory method

Stream

"laertes"

’ Output f(x
“"Hamlet', ...) @ put f(x)

! ! Input x

_.of("horatio”, Aggregate operation (behavior f)

Aggregate operation (behavior g)

! | Output g(f(x))

Aggregate operation (behavior h)

See en.wikipedia.org/wiki/Factory method pattern

https://en.wikipedia.org/wiki/Factory_method_pattern

Overview of Java 8 Streams

« A stream is created via a factory method

Stream

.of("'horatio",
"laertes',
llHamIetll’ i} -) o
Array - — - - “ "
<String> horatio laertes Hamlet
Stream — — v . -
<String> horatio laertes Hamlet

\

! ! Input x

Aggregate operation (behavior f)

! | Output f(x)

Aggregate operation (behavior g)

l | Output g(f(x))

Aggregate operation (behavior h)

The of() factory method converts an array of T into a stream of T

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#tof

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#of-T...-

Overview of Java 8 Streams

« A stream is created via a factory method

collection.stream()
collection.parallelStream()
Pattern.compile(.).splitAsStream()
Stream.of(valuel,.. ,valueN)
Arrays.stream(array)
Arrays.stream(array, start, end)
Files.lines(file_path)
"string'.chars(Q
Stream.builder().add(...)....build(Q)
Stream.generate(generate_expression)
Files.list(file_path)
Files.find(file_path, max_depth, mathcher)
Stream.generate(iterator::next)

! ! Input x

Aggregate operation (behavior f)

! | Output f(x)

Aggregate operation (behavior g)

l | Output g(f(x))

Aggregate operation (behavior h)

Stream.i1terate(init _value, generate_expression)
StreamSupport.stream(iterable.spliterator(), false)

There are many other factory methods that create streams

Overview of Java 8 Streams

« An aggregate operation performs a behavior on each element in a stream

! ! Input x

Aggregate operation (behavior f)

A behavior is implemented by a lambda expression or method reference

Overview of Java 8 Streams

« An aggregate operation performs a behavior on each element in a stream

(. l ! Input x
Stream

.of(""horatio", Aggregate operation (behavior f)

"laertes",
“"Hamlet', ...)
.Filter(s -> tolLowerCase
(s.charAt(0)) == "h")
.map(this::capitalize)

.sorted() ot
= i ream
\ .forEach(System.out: :printin); | <string> [horatio r—
Stream v v
<String> “Horatio” “Hamlet”

See qgithub.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12

Overview of Java 8 Streams

« An aggregate operation performs a behavior on each element in a stream

 ldeally, a behavior’s output in a stream | | Input x
depends only on its input arguments

Aggregate operation (behavior f)

l | Output f(x)

See en.wikipedia.org/wiki/Side effect (computer science)

https://en.wikipedia.org/wiki/Side_effect_(computer_science)

Overview of Java 8 Streams

« An aggregate operation performs a behavior on each element in a stream

 ldeally, a behavior’s output in a stream | | Input x
depends only on its input arguments

Aggregate operation (behavior f)

String capitalize(String s) { Output f(x)
IT (s.length() == 0) { }
return s;
return s.substring(0, 1) = ‘

-toUpperCase()
+ s.substring(l)
.toLowerCase();

See qgithub.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12

Overview of Java 8 Streams
« An aggregate operation performs a behavior on each element in a stream

« Behaviors with side-effects likely incur Aggregate operation (behavior f)

race conditions in parallel streams

! | iiOutput f(x)

19

Overview of Java 8 Streams
« An aggregate operation performs a behavior on each element in a stream

« Behaviors with side-effects likely incur Aggregate operation (behavior f)

race conditions in parallel streams

! | iiOutput f(x)

Only you can
prevent
race conditions!

ONLY YOU

In Java you must avoid race conditions, i.e., the compiler & JVM won't save you..

Overview of Java 8 Streams
« Streams enhance flexibility by forming a “processing pipeline” that chains
multiple aggregate operations together U Input x

Aggregate operation (behavior f)

! | Output f(x)

Aggregate operation (behavior g)

! | Output g(f(x))

Aggregate operation (behavior h)

@ Output h(g(f(x)))

See en.wikipedia.org/wiki/Pipeline (software)

https://en.wikipedia.org/wiki/Pipeline_(software)

Overview of Java 8 Streams

« Streams enhance flexibility by forming a “processing pipeline” that chains
multiple aggregate operations together

Array ——— — : @ List of names
<String> horatio laertes Hamlet . :
of(“horatio”, “laertes”, “Hamlet”, ...)
Stream —— Y ‘ {}Stream of names
<String> horatio “laertes” “Hamlet”
filter(s->toLowerCase(s.charAt(0)...)
Stream \4 v . . T
<String> | “horatio” e— {} Stream of names starting with ‘h
map(this::capitalize)
Stream v il
<String> “Horatio” “Hamlet” {} Stream of capitalized names
Stream ! ! el
<SUiNg> [amler “Horatio” {} Stream of sorted names

Each aggregate operation in the pipeline can filter and/or transform the stream

Overview of Java 8 Streams

» A stream holds no non-transient storage

! ! Input x

Aggregate operation (behavior f)

! I Output f(x)

Aggregate operation (behavior g)

! I Output g(f(x))

Aggregate operation (behavior h)

@ Output h(g(f(x)))

23

Overview of Java 8 Streams

» Every stream works very similarly

24

Overview of Java 8 Streams

» Every stream works very similarly |

e Starts with a source of data

4 ™
Stream
.of("'horatio",
""laertes",
“"Hamlet', ...)
- J

e.g., a Java array, collection, generator function, or input channel

Overview of Java 8 Streams

» Every stream works very similarly

e Starts with a source of data

rList<String> characters =
Arrays.asList("'horatio",
"laertes",

"Hamlet', ...);

characters
.stream()

. J

e.g., a Java array, collection, generator function, or input channel

Overview of Java 8 Streams

» Every stream works very similarly

* Processes the data through a pipeline
of intermediate operations

(Stream
.of("'horatio",
""laertes",
"Hamlet"™, ...)
.Filter(s -> toLowerCase

.map(this::capitalize)
.sorted()

(s.charAt(0)) == "h")

YJ\/Llnputx

Aggregate operation (behavior f)

! | Output f(x)

Aggregate operation (behavior g)

J

! | Output g(f(x))

Examples of intermediate operations include filter(), map(), & flatMap()

Overview of Java 8 Streams
» Every stream works very similarly
{} Input x

Aggregate operation (behavior f)

 Finishes with a terminal operation that | | Output f(x)
yields a non-stream result

Aggregate operation (behavior g)

.Filter(s -> toLowerCase @ Output g(f(x))
(s.charAt(0)) == "h")

-map(this::capitalize) Aggregate operation (behavior h)

.sorted()

.forEach(System.out: :printin); @ Output h(g(f(x)))

28

Overview of Java 8 Streams
» Every stream works very similarly
{} Input x

Aggregate operation (behavior f)

 Finishes with a terminal operation that | | Output f(x)
yields a non-stream result

Aggregate operation (behavior g)

.Filter(s -> toLowerCase @ Output g(f(x))
(s.charAt(0)) == "h")

-map(this::capitalize) Aggregate operation (behavior h)

.sorted()

.forEach(System.out: :printin); @ Output h(g(f(x)))

A terminal operation triggers processing of intermediate operations in a stream

Overview of Java 8 Streams

» Every stream works very similarly void runForEach() {
Stream
.of("'horatio",
"laertes",
"Hamlet", ...)
« Finishes with a terminal operation that -filter(s -> tolLowerCase

(s.charAt(0)) == "h")
-map(this::capitalize)
* no value at all _sorted()

.forEach
(System.out: :printin);

yields a non-stream result, e.qg.

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#forEach

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#forEach-java.util.function.Consumer-

Overview of Java 8 Streams

» Every stream works very similarly void runCollect() {
List<String> characters =
Arrays.asList("'horatio",

"laertes',
"Hamlet',
* Finishes with a terminal operation that)) ---)s
yields a non-stream result, e.g. List<String> results =
characters
.stream()
« a collection filter(s ->

toLowerCase(..) =="h")
-map(this::capitalize)
.sorted()
.collect(toList());

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#collect

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#collect-java.util.stream.Collector-

Overview of Java 8 Streams

» Every stream works very similarly void runCollect() {
List<String> characters =
Arrays.asList("'horatio",
"laertes",
"Hamlet",

--);

Map<String, Long> results =

* Finishes with a terminal operation that
yields a non-stream result, e.g.
.collect

« a collection (groupingBy

(identity(),
collect() can be used with a range / TreeMap: :new,

of powerful collectors ,e.g., to summingLong
group by name & length of name (String::length)));

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html

Overview of Java 8 Streams

» Every stream works very similarly void runCollect() {
List<String> characters =
Arrays.asList("'horatio",
"laertes",
"Hamlet",
--)s

Map<String, Long> results =

* Finishes with a terminal operation that
yields a non-stream result, e.g.
.collect
(groupingBy
(identity(),
TreeMap: -new,
summinglLong
(String::length)));

* a collection

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html#qgroupingBy

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html#groupingBy-java.util.function.Function-java.util.function.Supplier-java.util.stream.Collector-

Overview of Java 8 Streams

» Every stream works very similarly void runCollectReduce() {
Map<String, Long>
matchingCharactersMap =

Pattern.compile(’”,™)
-SplitAsStreanm

« Finishes with a terminal operation that (“"horatio,Hamlet,.."")

lelds a non-stream result, e.g. - - -
’ J long countOfNamelLengths =

matchingCharactersMap
-values()
.stream()
.reduce(OL,

(X, ¥y) > x +y);
// Could use .sum()

e a primitive value

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce-T-java.util.function.BinaryOperator-

Overview of Java 8 Streams

* Every stream works very similarly void runCollectReduce() {
Map<String, Long>
matchingCharactersMap =
Pattern.compile(”,')
-SplitAsStreanm

« Finishes with a terminal operation that (“"horatio,Hamlet,.."")

lelds a non-stream result, e.g. - - -
’ J long countOfNamelLengths =

matchingCharactersMap
-values()
.stream()
-reduce(OL,

0 is the “identity,” i.e., the initial value /W y) > X + y);
of the reduction & the default result if // Could use .sum()

there are no elements in the stream

e a primitive value

35

Overview of Java 8 Streams

* Every stream works very similarly void runCollectReduce() {
Map<String, Long>
matchingCharactersMap =
Pattern.compile(”,')
-SplitAsStreanm

« Finishes with a terminal operation that (“"horatio,Hamlet,.."")

lelds a non-stream result, e.g. - - -
’ J long countOfNamelLengths =

matchingCharactersMap
-values()

. it | .stream()
a primitive value _reduce(OL,

. . “ yy . . (X’ y) -> X + y);
This lambda iIs the “accumulator,” which is a ///’7'&;“ Id use .sum(Q)
stateless function that combines two values

36

Overview of Java 8 Streams

» Every stream works very similarly void runCollectReduce() {
Map<String, Long>
matchingCharactersMap =
Pattern.compile(”,')
-SplitAsStreanm

« Finishes with a terminal operation that (“"horatio,Hamlet,.."")

lelds a non-stream result, e.g. - - -
’ J long countOfNamelLengths =

matchingCharactersMap
-values()
. .stream()
e a primitive value _reduce (0L,
(X’ y) -> X tY,

Theres a 3 parameter “map/reduce” version X, Y) > X+ Y);
of reduce() that's used in parallel streams

See www.youtube.com/watch?v=0WIWEKNM5Aw

http://www.youtube.com/watch?v=oWlWEKNM5Aw

Overview of Java 8 Streams

» Every stream works very similarly

» Finishes with a terminal operation that
yields a non-stream result

- I ‘* *
L2F .
| t‘r\
- . -
»
. |
" I

Each stream must have one (& only one) terminal operation

http://www.youtube.com/watch?v=oWlWEKNM5Aw

Overview of Java 8 Streams

« Each aggregate operation in a stream runs
Its behavior sequentially by default

{} Input x

Aggregate operation (behavior f)

! | Output f(x)

Aggregate operation (behavior g)

! | Output g(f(x))

Aggregate operation (behavior h)

@ Output h(g(f(x)))

See radar.oreilly.com/2015/02/java-8-streams-api-and-parallelism.htmi

http://radar.oreilly.com/2015/02/java-8-streams-api-and-parallelism.html

Overview of Java 8 Streams

e Each aggregate operation in a stream runs
Its behavior sequentially by default
{} Input x 95
Aggregate operation (behavior f)

|
|
e |.e., one at a time in a single thread |
|
|
|
| 4 L
|
I| Aggregate operation (behavior Q)
|
|
|
|
|
|
|
|
|

We'll cover sequential streams first
l | Output g(f(x))

Aggregate operation (behavior h)

See docs.oracle.com/javase/tutorial/collections/streams

http://docs.oracle.com/javase/tutorial/collections/streams

Overview of Java 8 Streams

e A Java 8 parallel stream splits its elements J
Into multiple chunks & uses a common fork- < X eé
join pool to process the chunks independently ,eé {}n,‘”p“t X

Aggregate operation (behavior f)

! | iiOutput f(x)
L

Aggregate operation (behavior g)

-

Common Fork-Join Pool

Deque Deque Deque

Sub-Task, »

Sub-Task; 3

M| Sub-Task,,

]

,,,,
T L

Il
J L 1output g(f(x))
I
4 pooy ad® .
o / Aggregate operation (behavior h)
| I
We’ll cover parallel streams shortly | @ ::O utput h(g(f(x)));

See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

End of Overview of Java
8 Streams (Part 1)

42

	Slide Number 1
	Learning Objectives in this Part of the Lesson
	Learning Objectives in this Part of the Lesson
	Learning Objectives in this Part of the Lesson
	Overview of �Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	End of Overview of Java �8 Streams (Part 1)

