
Overview of Java 8 Streams (Part 1)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand the structure & functionality of Java 8 streams

Aggregate operation (behavior f)

Input x

Output f(x)

Output g(f(x))

Output h(g(f(x)))

Aggregate operation (behavior g)

Aggregate operation (behavior h)

3

Learning Objectives in this Part of the Lesson
• Understand the structure & functionality of Java 8 streams, e.g.,

• Fundamentals of streams

Aggregate operation (behavior f)

Input x

Output f(x)

Output g(f(x))

Output h(g(f(x)))

Aggregate operation (behavior g)

Aggregate operation (behavior h)

4

Learning Objectives in this Part of the Lesson
• Understand the structure & functionality of Java 8 streams, e.g.,

• Fundamentals of streams
• We’ll use an example program

to illustrate key concepts Aggregate operation (behavior f)

Input x

Output f(x)

Output g(f(x))

Output h(g(f(x)))

Aggregate operation (behavior g)

Aggregate operation (behavior h)

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12

Stream
.of("horatio",

"laertes",
"Hamlet", ...)

.filter(s -> toLowerCase
(s.charAt(0)) == 'h')

.map(this::capitalize)

.sorted()

.forEach(System.out::println);

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12

5

Overview of
Java 8 Streams

6

• Java 8 streams are an addition to the
Java library that provide programs
with several key benefits

Overview of Java 8 Streams

See docs.oracle.com/javase/tutorial/collections/streams

https://docs.oracle.com/javase/tutorial/collections/streams

7

• Java 8 streams are an addition to the
Java library that provide programs
with several key benefits
• Manipulate flows of data in a

declarative way

Overview of Java 8 Streams

filter(not(this::urlCached))

collect(toList())

…

map(this::downloadImage)

flatMap(this::applyFilters)
This stream expresses what
operations to perform, not

how to perform them

See github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

https://github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

8

• Java 8 streams are an addition to the
Java library that provide programs
with several key benefits
• Manipulate flows of data in a

declarative way
• Enable transparent parallelization

without the need to write any
multi-threaded code

Overview of Java 8 Streams

filter(not(this::urlCached))

collect(toList())

map(this::downloadImage)

flatMap(this::applyFilters)

…

The data elements in this
stream are automatically

mapped to processor cores

See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

http://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

9

• A stream is a pipeline of aggregate operations that process a sequence of
elements (aka, “values”)

Aggregate operation (behavior f)

Aggregate operation (behavior g)

Aggregate operation (behavior h)

See docs.oracle.com/javase/tutorial/collections/streams

Input x

Output f(x)

Output g(f(x))

Overview of Java 8 Streams

https://docs.oracle.com/javase/tutorial/collections/streams

10

• A stream is a pipeline of aggregate operations that process a sequence of
elements (aka, “values”)

Aggregate operation (behavior f)

Aggregate operation (behavior g)

Aggregate operation (behavior h)

Input x

Output f(x)

Output g(f(x))

A stream is conceptually unbounded, though they
are typically bounded by practical constraints

Overview of Java 8 Streams

11

• A stream is a pipeline of aggregate operations that process a sequence of
elements (aka, “values”)

Aggregate operation (behavior f)

Aggregate operation (behavior g)

Aggregate operation (behavior h)

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12

Input x

Output f(x)

Output g(f(x))

Stream
.of("horatio",

"laertes",
"Hamlet", ...)

.filter(s -> toLowerCase
(s.charAt(0)) == 'h')

.map(this::capitalize)

.sorted()

.forEach(System.out::println);

Overview of Java 8 Streams

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12

12

• A stream is created via a factory method

See en.wikipedia.org/wiki/Factory_method_pattern

Aggregate operation (behavior f)

Aggregate operation (behavior g)

Aggregate operation (behavior h)

Input x

Output f(x)

Output g(f(x))

Stream
.of("horatio",

"laertes",
"Hamlet", ...)

...

Overview of Java 8 Streams

https://en.wikipedia.org/wiki/Factory_method_pattern

13

• A stream is created via a factory method

Aggregate operation (behavior f)

Aggregate operation (behavior g)

Aggregate operation (behavior h)

Input x

Output f(x)

Output g(f(x))

Stream
.of("horatio",

"laertes",
"Hamlet", ...) ...

Stream
<String>

Array
<String> “horatio” …

…

“laertes” “Hamlet”

“horatio” “laertes” “Hamlet”

The of() factory method converts an array of T into a stream of T

Overview of Java 8 Streams

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#of

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#of-T...-

14

• A stream is created via a factory method

Aggregate operation (behavior f)

Aggregate operation (behavior g)

Aggregate operation (behavior h)

Input x

Output f(x)

Output g(f(x))

There are many other factory methods that create streams

collection.stream()
collection.parallelStream()
Pattern.compile(…).splitAsStream()
Stream.of(value1,… ,valueN)
Arrays.stream(array)
Arrays.stream(array, start, end)
Files.lines(file_path)
"string".chars()
Stream.builder().add(...)....build()
Stream.generate(generate_expression)
Files.list(file_path)
Files.find(file_path, max_depth, mathcher)
Stream.generate(iterator::next)
Stream.iterate(init_value, generate_expression)
StreamSupport.stream(iterable.spliterator(), false)
...

Overview of Java 8 Streams

15

• An aggregate operation performs a behavior on each element in a stream

A behavior is implemented by a lambda expression or method reference

Aggregate operation (behavior f)

Input x

Overview of Java 8 Streams

16

• An aggregate operation performs a behavior on each element in a stream

Aggregate operation (behavior f)

Input x

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12

Stream
.of("horatio",

"laertes",
"Hamlet", ...)

.filter(s -> toLowerCase
(s.charAt(0)) == 'h')

.map(this::capitalize)

.sorted()

.forEach(System.out::println);

Overview of Java 8 Streams

Stream
<String>

Stream
<String>

“horatio” “Hamlet”

“Horatio” “Hamlet”

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12

17

• An aggregate operation performs a behavior on each element in a stream
• Ideally, a behavior’s output in a stream

depends only on its input arguments
Aggregate operation (behavior f)

See en.wikipedia.org/wiki/Side_effect_(computer_science)

Input x

Output f(x)

Overview of Java 8 Streams

https://en.wikipedia.org/wiki/Side_effect_(computer_science)

18

• An aggregate operation performs a behavior on each element in a stream
• Ideally, a behavior’s output in a stream

depends only on its input arguments
Aggregate operation (behavior f)

Input x

Output f(x)String capitalize(String s) {
if (s.length() == 0)
return s;

return s.substring(0, 1)
.toUpperCase()
+ s.substring(1)

.toLowerCase();

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12

Overview of Java 8 Streams

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12

19

• An aggregate operation performs a behavior on each element in a stream
• Ideally, a behavior’s output in a stream

depends only on its input arguments
• Behaviors with side-effects likely incur

race conditions in parallel streams
Aggregate operation (behavior f)

Input x

Output f(x)

Overview of Java 8 Streams

20In Java you must avoid race conditions, i.e., the compiler & JVM won’t save you..

• An aggregate operation performs a behavior on each element in a stream
• Ideally, a behavior’s output in a stream

depends only on its input arguments
• Behaviors with side-effects likely incur

race conditions in parallel streams

Overview of Java 8 Streams

Only you can
prevent

race conditions!

Aggregate operation (behavior f)

Input x

Output f(x)

21

• Streams enhance flexibility by forming a “processing pipeline” that chains
multiple aggregate operations together

Aggregate operation (behavior f)

Aggregate operation (behavior g)

See en.wikipedia.org/wiki/Pipeline_(software)

Input x

Output f(x)

Output g(f(x))

Aggregate operation (behavior h)

Output h(g(f(x)))

Overview of Java 8 Streams

https://en.wikipedia.org/wiki/Pipeline_(software)

22

• Streams enhance flexibility by forming a “processing pipeline” that chains
multiple aggregate operations together

of(“horatio”, “laertes”, “Hamlet”, …)

filter(s->toLowerCase(s.charAt(0)…)

Each aggregate operation in the pipeline can filter and/or transform the stream

Stream
<String>

Stream
<String>

Stream
<String>

Stream
<String>

Array
<String> “horatio” …

…

“laertes” “Hamlet”

“horatio” “laertes” “Hamlet”

“horatio” “Hamlet”

“Horatio” “Hamlet”

“Horatio”“Hamlet”

sorted()

Overview of Java 8 Streams

map(this::capitalize)

List of names

Stream of names

Stream of names starting with ‘h’

Stream of capitalized names

Stream of sorted names

23

• A stream holds no non-transient storage

Aggregate operation (behavior f)

Aggregate operation (behavior g)

Input x

Output f(x)

Output g(f(x))

Aggregate operation (behavior h)

Output h(g(f(x)))

Overview of Java 8 Streams

24

• Every stream works very similarly
Overview of Java 8 Streams

25

• Every stream works very similarly
• Starts with a source of data

e.g., a Java array, collection, generator function, or input channel

Stream
.of("horatio",

"laertes",
"Hamlet", ...)

...

…
Overview of Java 8 Streams

26

• Every stream works very similarly
• Starts with a source of data

e.g., a Java array, collection, generator function, or input channel

List<String> characters =
Arrays.asList("horatio",

"laertes",
"Hamlet", ...);

characters
.stream()
...

…
Overview of Java 8 Streams

27

• Every stream works very similarly
• Starts with a source of data
• Processes the data through a pipeline

of intermediate operations Aggregate operation (behavior f)

Aggregate operation (behavior g)

Examples of intermediate operations include filter(), map(), & flatMap()

Input x

Output f(x)

Output g(f(x))

Stream
.of("horatio",

"laertes",
"Hamlet", ...)

.filter(s -> toLowerCase
(s.charAt(0)) == 'h')

.map(this::capitalize)

.sorted()

...

…
Overview of Java 8 Streams

28

• Every stream works very similarly
• Starts with a source of data
• Processes the data through a pipeline

of intermediate operations
• Finishes with a terminal operation that

yields a non-stream result

Aggregate operation (behavior f)

Aggregate operation (behavior g)

Aggregate operation (behavior h)

Output f(x)

Output g(f(x))

Output h(g(f(x)))

...

.filter(s -> toLowerCase
(s.charAt(0)) == 'h')

.map(this::capitalize)

.sorted()

.forEach(System.out::println);

…

Input x

Overview of Java 8 Streams

29

• Every stream works very similarly
• Starts with a source of data
• Processes the data through a pipeline

of intermediate operations
• Finishes with a terminal operation that

yields a non-stream result

Aggregate operation (behavior f)

Aggregate operation (behavior g)

Aggregate operation (behavior h)

Output f(x)

Output g(f(x))

Output h(g(f(x)))

...

.filter(s -> toLowerCase
(s.charAt(0)) == 'h')

.map(this::capitalize)

.sorted()

.forEach(System.out::println);

…

Input x

Overview of Java 8 Streams

A terminal operation triggers processing of intermediate operations in a stream

30

• Every stream works very similarly
• Starts with a source of data
• Processes the data through a pipeline

of intermediate operations
• Finishes with a terminal operation that

yields a non-stream result, e.g.
• no value at all

Overview of Java 8 Streams

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#forEach

void runForEach() {
Stream
.of("horatio",

"laertes",
"Hamlet", ...)

.filter(s -> toLowerCase
(s.charAt(0)) == 'h')

.map(this::capitalize)

.sorted()

.forEach
(System.out::println);

...

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#forEach-java.util.function.Consumer-

31See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#collect

• Every stream works very similarly
• Starts with a source of data
• Processes the data through a pipeline

of intermediate operations
• Finishes with a terminal operation that

yields a non-stream result, e.g.
• no value at all
• a collection

Overview of Java 8 Streams
void runCollect() {
List<String> characters =
Arrays.asList("horatio",

"laertes",
"Hamlet",
...);

List<String> results =
characters
.stream()
.filter(s ->
toLowerCase(…) =='h')

.map(this::capitalize)

.sorted()

.collect(toList()); ...

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#collect-java.util.stream.Collector-

32See docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html

• Every stream works very similarly
• Starts with a source of data
• Processes the data through a pipeline

of intermediate operations
• Finishes with a terminal operation that

yields a non-stream result, e.g.
• no value at all
• a collection

Overview of Java 8 Streams
void runCollect() {
List<String> characters =
Arrays.asList("horatio",

"laertes",
"Hamlet",
...);

Map<String, Long> results =
...
.collect

(groupingBy
(identity(),
TreeMap::new,
summingLong
(String::length)));

...

collect() can be used with a range
of powerful collectors ,e.g., to

group by name & length of name

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html

33See docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html#groupingBy

• Every stream works very similarly
• Starts with a source of data
• Processes the data through a pipeline

of intermediate operations
• Finishes with a terminal operation that

yields a non-stream result, e.g.
• no value at all
• a collection

Overview of Java 8 Streams
void runCollect() {
List<String> characters =
Arrays.asList("horatio",

"laertes",
"Hamlet",
...);

Map<String, Long> results =
...
.collect

(groupingBy
(identity(),
TreeMap::new,
summingLong
(String::length)));

...

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collectors.html#groupingBy-java.util.function.Function-java.util.function.Supplier-java.util.stream.Collector-

34See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce

• Every stream works very similarly
• Starts with a source of data
• Processes the data through a pipeline

of intermediate operations
• Finishes with a terminal operation that

yields a non-stream result, e.g.
• no value at all
• a collection
• a primitive value

Overview of Java 8 Streams
void runCollectReduce() {

Map<String, Long>
matchingCharactersMap =
Pattern.compile(",")
.splitAsStream
("horatio,Hamlet,…")

...
long countOfNameLengths =
matchingCharactersMap
.values()
.stream()
.reduce(0L,

(x, y) -> x + y);
// Could use .sum()

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce-T-java.util.function.BinaryOperator-

35

• Every stream works very similarly
• Starts with a source of data
• Processes the data through a pipeline

of intermediate operations
• Finishes with a terminal operation that

yields a non-stream result, e.g.
• no value at all
• a collection
• a primitive value

Overview of Java 8 Streams

0 is the “identity,” i.e., the initial value
of the reduction & the default result if
there are no elements in the stream

void runCollectReduce() {
Map<String, Long>
matchingCharactersMap =
Pattern.compile(",")
.splitAsStream
("horatio,Hamlet,…")

...
long countOfNameLengths =
matchingCharactersMap
.values()
.stream()
.reduce(0L,

(x, y) -> x + y);
// Could use .sum()

36

• Every stream works very similarly
• Starts with a source of data
• Processes the data through a pipeline

of intermediate operations
• Finishes with a terminal operation that

yields a non-stream result, e.g.
• no value at all
• a collection
• a primitive value

Overview of Java 8 Streams

This lambda is the “accumulator,” which is a
stateless function that combines two values

void runCollectReduce() {
Map<String, Long>
matchingCharactersMap =
Pattern.compile(",")
.splitAsStream
("horatio,Hamlet,…")

...
long countOfNameLengths =
matchingCharactersMap
.values()
.stream()
.reduce(0L,

(x, y) -> x + y);
// Could use .sum()

37

• Every stream works very similarly
• Starts with a source of data
• Processes the data through a pipeline

of intermediate operations
• Finishes with a terminal operation that

yields a non-stream result, e.g.
• no value at all
• a collection
• a primitive value

Overview of Java 8 Streams

There’s a 3 parameter “map/reduce” version
of reduce() that’s used in parallel streams

void runCollectReduce() {
Map<String, Long>
matchingCharactersMap =
Pattern.compile(",")
.splitAsStream
("horatio,Hamlet,…")

...
long countOfNameLengths =
matchingCharactersMap
.values()
.stream()
.reduce(0L,

(x, y) -> x + y,
(x, y) -> x + y);

See www.youtube.com/watch?v=oWlWEKNM5Aw

http://www.youtube.com/watch?v=oWlWEKNM5Aw

38

• Every stream works very similarly
• Starts with a source of data
• Processes the data through a pipeline

of intermediate operations
• Finishes with a terminal operation that

yields a non-stream result

Overview of Java 8 Streams

See www.youtube.com/watch?v=oWlWEKNM5AwEach stream must have one (& only one) terminal operation

http://www.youtube.com/watch?v=oWlWEKNM5Aw

39See radar.oreilly.com/2015/02/java-8-streams-api-and-parallelism.html

• Each aggregate operation in a stream runs
its behavior sequentially by default

Aggregate operation (behavior f)

Aggregate operation (behavior g)

Aggregate operation (behavior h)

Output f(x)

Output g(f(x))

Output h(g(f(x)))

…

Input x

Overview of Java 8 Streams

http://radar.oreilly.com/2015/02/java-8-streams-api-and-parallelism.html

40

• Each aggregate operation in a stream runs
its behavior sequentially by default
• i.e., one at a time in a single thread

Aggregate operation (behavior f)

Aggregate operation (behavior g)

Aggregate operation (behavior h)

Output f(x)

Output g(f(x))

Output h(g(f(x)))

…

Input x

Overview of Java 8 Streams

See docs.oracle.com/javase/tutorial/collections/streams

We’ll cover sequential streams first

http://docs.oracle.com/javase/tutorial/collections/streams

41

• A Java 8 parallel stream splits its elements
into multiple chunks & uses a common fork-
join pool to process the chunks independently

Aggregate operation (behavior f)

Output f(x)

Output g(f(x))

Aggregate operation (behavior g)

Aggregate operation (behavior h)

Output h(g(f(x)))

See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

…

Input x

Overview of Java 8 Streams

We’ll cover parallel streams shortly

https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

42

End of Overview of Java
8 Streams (Part 1)

	Slide Number 1
	Learning Objectives in this Part of the Lesson
	Learning Objectives in this Part of the Lesson
	Learning Objectives in this Part of the Lesson
	Overview of �Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	Overview of Java 8 Streams
	End of Overview of Java �8 Streams (Part 1)

